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A B S T R A C T   

Endocrine Disrupting Chemicals (EDCs), major group of recalcitrant compounds, poses a serious threat to the 
health and future of millions of human beings, and other flora and fauna for years to come. A close analysis of 
various xenobiotics undermines the fact that EDC is structurally diverse chemical compounds generated as a part 
of anthropogenic advancements as well as part of their degradation. Regardless of such structural diversity, EDC 
is common in their ultimate drastic effect of impeding the proper functioning of the endocrinal system, basic 
physiologic systems, resulting in deregulated growth, malformations, and cancerous outcomes in animals as well 
as humans. The current review outlines an overview of various EDCs, their toxic effects on the ecosystem and its 
inhabitants. Conventional remediation methods such as physico-chemical methods and enzymatic approaches 
have been put into action as some form of mitigation measures. However, the last decade has seen the hunt for 
newer technologies and methodologies at an accelerated pace. Genetically engineered microbial degradation, 
gene editing strategies, metabolic and protein engineering, and in-silico predictive approaches - modern day’s 
additions to our armamentarium in combating the EDCs are addressed. These additions have greater acceptance 
socially with lesser dissonance owing to reduced toxic by-products, lower health trepidations, better degradation, 
and ultimately the prevention of bioaccumulation. The positive impact of such new approaches on controlling 
the menace of EDCs has been outlaid. This review will shed light on sources of EDCs, their impact, significance, 
and the different remediation and bioremediation approaches, with a special emphasis on the recent trends and 
perspectives in using sustainable approaches for bioremediation of EDCs. Strict regulations to prevent the release 
of estrogenic chemicals to the ecosystem, adoption of combinatorial methods to remove EDC and prevalent use of 
bioremediation techniques should be followed in all future endeavors to combat EDC pollution. Moreover, the 
proper development, growth and functioning of future living forms relies on their non-exposure to EDCs, thus 
remediation of such chemicals present even in nano-concentrations should be addressed gravely.   

* Corresponding author. 
** Corresponding author. 

E-mail addresses: sindhurgcb@gmail.com, sindhufax@yahoo.co.in (R. Sindhu), mukesh_awasthi45@yahoo.com, mukeshawasthi85@nwafu.edu.cn 
(M.K. Awasthi).  

Contents lists available at ScienceDirect 

Environmental Research 

journal homepage: www.elsevier.com/locate/envres 

https://doi.org/10.1016/j.envres.2022.113509 
Received 19 February 2022; Received in revised form 8 May 2022; Accepted 18 May 2022   

mailto:sindhurgcb@gmail.com
mailto:sindhufax@yahoo.co.in
mailto:mukesh_awasthi45@yahoo.com
mailto:mukeshawasthi85@nwafu.edu.cn
www.sciencedirect.com/science/journal/00139351
https://www.elsevier.com/locate/envres
https://doi.org/10.1016/j.envres.2022.113509
https://doi.org/10.1016/j.envres.2022.113509
https://doi.org/10.1016/j.envres.2022.113509
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envres.2022.113509&domain=pdf


Environmental Research 213 (2022) 113509

2

1. Introduction 

As the world royally strides through the 21stcentury boasting of 
humongous advancements in science and technology, we are not im-
mune to the problems that come along. Globalization, urbanization, 
industrial revolution, privatization, and booming economies have been 
badly hit by the COVID-19 pandemic displaying the vulnerability of the 
human race to even a teeny tiny virus (Sharifi and Khavarian-Garmsir, 
2020; Harris and Moss, 2020; Gupta et al., 2021). The ever increasing 
release of toxic chemicals as byproducts of various developmental ac-
tivities is monumental in bringing on this alarm worldwide (Khan et al., 
2015; Huang et al., 2017; Cervantes-Ramírez et al., 2018; Bank et al., 
2019; Curtis et al., 2019; Alava, 2020; Miller et al., 2020). One such 
debated group is the Endocrine disrupting chemicals (EDCs) which have 
now taken the center stage. Their deleterious impact on the well-being of 
life on our planet as they do not vitiate easily and have a long-lasting 
residual effect is disconcerting. They also have the propensity to trans-
form into more toxic products principally after treatment or disinfection 
which has brought this topic from total obscurity to become an inter-
national concern (Mnif et al., 2011; De Coster and Van Larebeke, 2012; 
Nohynek et al., 2013; Kabir et al., 2015; Lauretta et al., 2019; Leusch 
et al., 2019; La Merrill et al., 2019). 

In 2002, World Health Organization’s (WHO)International Pro-
gramme on Chemical Safety (IPCS) defined EDC as an ‘exogenous sub-
stance or mixture that alters the function(s) of the endocrine system and 
consequently causes adverse health effects in an intact organism, or its 
progeny, or (sub) population’(IPCS WHO, 2002). This was in fact a 
modification of the earlier definition proposed by the European Work-
shop on, ‘the impact of endocrine disruptors on human health and 
wildlife’ held in Weighbridge, UK, and moreover replaced the definition 
laid by the U.S. Environmental Protection Agency (EC 1996; Nowak 
et al., 2019). European Food Safety Agency (EFSA) had a consensus with 
the IPCS’s definition of EDCs. But it modified another important ter-
minology, the Endocrine active substances (EASs) which the agency had 
earlier defined in 2010 as a substance having the inherent ability to 
interact or interfere with one or more components of the endocrine 
system resulting in a biological effect, but need not necessarily cause 
adverse effects (EFSA, 2013). There are over 800 EDCs and EASs which 
are a cause of emerging concern owing to their substantially long-lasting 
potential to alter the cellular, epigenetic, and molecular functions of the 
different components of the endocrine system of both man and animals. 
Their effects akin to hormones may be additive or antagonistic to the 
coordination function of the endocrine system on different organ sys-
tems from head to toe (Bergman et al., 2013; Lauretta et al., 2019; 
Nowak et al., 2019; Patel et al., 2020; Lopez-Rodriguez et al., 2021). 

Initially, artificial biotechnology measures to degrade pollutants, 
with again tremendous negative impacts, like the production of toxic 
products and metabolites more damaging to the environment were 
available and increasing exponentially (Iwasaki et al., 2010; Maroga 
Mboula et al., 2013; Da Silva et al., 2014; Armijos-Alcocer et al., 2017; 
Garg et al., 2019; Zhou et al., 2020). Nevertheless, their routine use was 
discouraged except for the environmentally friendly techniques and was 
soon replaced by bioremediation. Such efforts traditionally aimed at 
eliminating or breaking down the multifarious persistent organic pol-
lutants (POP) including the EDCs by biological means to less detrimental 
products or reinstating the equilibrium in the environment by using it 
wisely at different polluted sites (Azubuike et al., 2016; Zouboulis et al., 
2019; Gholami et al., 2019; Gao et al., 2020). However, the existing 
technologies though popular are facing much criticism owing to the 
failure to completely clear out despite the time invested, owing to the 
reduced bioavailability, low efficiency, and deficiency of good assays to 
evaluate the effectiveness of the procedures in addition to the obvious 
limitation that they cannot be used for non-biodegradable EDCs. Hence 
newer technologies and advanced bio-remedial methods are being 
researched and explored with very few of them hitting the bull’s eye 
(Zhang et al., 2016; Wang et al., 2019; Liu et al., 2019; Hernández-Abreu 

et al., 2020; Menchén et al., 2020; Singh et al., 2021a; Roccuzzo et al., 
2021). 

Advanced bioremediation measures to reinstate and renew the bal-
ance in various ecological niches by getting rid of EDCs through inter-
disciplinary interactions and the latest advances in applications of 
genomics, metagenomics, whole-genome sequencing, proteomics, 
transcriptomics, metabolomics, computation and bioinformatics, and 
other novel fields. The use of genetically engineered microbes (GEMs) 
also known as genetically modified organisms (GMOs) or genetically 
modified microorganisms, computational approaches i.e. the in-silico 
predictive mechanisms, metabolic or protein engineering to target en-
zymes are proving to be valuable extenuation strategies (Vilchez-Vargas 
et al., 2010; Azubuike et al., 2016; Dangi et al., 2019; Liu et al., 2019; 
Singh et al., 2021a). Metabolic engineering by using DNA recombinant 
technology or genome editing tools like Clustered Regularly Interspaced 
Short Palindromic Repeats (CRISPR) to modify the existing metabolic 
pathways to alter enzymes and create synthetic communities in a su-
perlative manner for efficacious bioremediation (Dangi et al., 2019; 
Sharma and Shukla, 2020). Likewise, another option is protein engi-
neering where enzymes are played with to enhance their stability and 
efficiency for degrading particular substrates or increase the capacity for 
distinct settings (Deshmukh et al., 2016; Mousavi et al., 2021). 
Furthermore, technology innovation and artificial intelligence are 
coming up in a big way; newer computational approaches to bioreme-
diation are expanding their horizons. Predictive bioremediation in-
cludes pathway biodegradation prediction systems, molecular docking, 
molecular dynamic simulation, in-silico toxicity analysis expert systems 
like the Quantitative structure-biodegradation relationship modeling, 
the Quantitative Structure-Activity Relationship (QSAR)modeling, 
expert system, programs of machine learning, artificial neural network 
and genetic algorithm (Pagadala et al., 2017; Acharya et al., 2019; Singh 
et al., 2021b). The recent years have seen increasing evidence on the role 
of novel tools comprising of biosurfactants, biofilm producing bacteria 
and nanotechnology on bioremediation of EDCs (Jim’enez-Penalver 
et al., 2020; Mohsin et al., 2021; Mallikarjunaiah S et al., 2020). In this 
context, an updated narrative review on the EDCs, their sources, 
mechanism of action, conventional and newer bioremediation tech-
niques, is quintessential. This review hopes to do justice to all these 
aspects and give a bird’s eye view of EDCs sources, significance and 
impact on health in general, while elaborating on bioremediation stra-
tegies and novel perspectives and sustainable alternative technologies 
especially in last five years. This review follows how the earlier 
physic-chemical, microbial, conventional in-situ, and ex-situ bioremedi-
ation techniques have been ousted and newer technologies have taken 
the front seat as the tools with the maximum potential to neutralize the 
EDCs. 

2. Overview on EDCs-Types, sources and mechanism of action 

Indeed, it has never been easy to classify EDCs as there are diverse 
factors involved. The different types of EDCs may be demarcated based 
either on their chemical features, sources of origin, adversative health 
effects, exposure sources, mechanism of action or any such other com-
monalities shared (Fig. 1) (Haq and Raj, 2018; Leusch et al., 2019; Patel 
et al., 2020; Wojcieszynska et al., 2020; Buoso et al., 2020; Lopez-Ro-
driguez et al., 2021). In addition to knowledge of the mechanisms, 
source, and types of EDCs, the testing and classification of EDCs should 
be based on well-regulated and clearly defined international universal 
standards (Kubickova et al., 2021). An internationally accepted listing 
based on specific characterizations though long overdue is still on the 
horizon and so far has never made it to tables. A feasible consensus needs 
to be made at the earliest by the regulatory bodies and standards need to 
be put forth very strictly to be adhered globally for a safer tomorrow. 

EDCs include natural, synthetic, and metabolic steroid or non-steroid 
derivatives of estrogen and the like hormones. The most infamous rep-
resentatives of the group include bisphenol A (BPA), nonylphenol (NP) 
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together called xenoestrogens, followed by estrone (E1), 17β-estradiol 
(E2), estriol (E3), 17α-ethinylestradiol (EE2) classically belonging to 
steroidal estrogens, followed by phthalates, chlorophenols, norethin-
drone, and triclosan (TCS) (Zhang et al., 2016; Huang et al., 2017; La 
Merrill et al., 2019; Lopez-Rodriguez et al., 2021). Newer and newer 
EDCs are being rapidly added to this list. 

The categorization of EDCs arbitrarily as belonging to phthalates, 
bisphenols, parabens, polychlorinated biphenyl (PCBs), Phytoestrogens, 
Dioxins, dibenzofurans, alkyl phenolic compounds, perfluoroalkyl 
compounds, pesticides or fungicides, UV filters, pharmaceuticals, flame 
retardants, mercury, etc. Was done to understand broadly its mechanism 
of actions (La Merrill et al., 2019; Lopez-Rodriguez et al., 2021). How-
ever, the earlier report in 2012 by UNEP and WHO, classified EDCs 
based on their physico-chemical structure and or sources into 11 types 
under four categories of persistent and bioaccumulative halogenated 
compounds, less persistent and bioaccumulative compounds, pesticides, 
pharmaceuticals, personal care products, and other chemicals. Only the 
most relevant and specific EDCs are illustrated in the Table .1 (IPCS 
WHO, 2002; Bergman et al., 2013; Patel et al., 2020; Wojcieszynska 
et al., 2020; Buoso et al., 2020). 

EDCs with its ‘hormone like action’ may be stimulating or deterring 
the functioning of the endocrine system, typically undesirably affecting 
the normal utility of the system. The signaling function is colossally 
affected by certain precise activities at the molecular level and at the 
tissue level, whether males or females, changes in the cycle of life, the 
diurnal rhythm and even the changes in the seasons. All these factors 
interplay and probably interfere with the normal operations of hor-
mones maintaining the harmony of our internal milieu and thereby 
having injurious consequences (Boas et al., 2012; Nowak et al., 2019; La 
Merrill et al., 2019). 

The major contrivances of EDCs action may be at the level of the 
hormone receptors whereby its binding can activate or inhibit the entire 
signal transduction pathways, or inhibit or stimulate the receptor itself, 
further it can have downstream interfaces with other components of the 
signaling pathway, stimulate or inhibit the synthesis of an endogenous 
hormone, bind to the same transport proteins, thereby reducing the 
levels of endogenous hormones in circulation (Bergman et al., 2013; 
Combarnous, 2017; Combarnous and Diep Nguyen, 2019; Lauretta et al., 

2019). Their main characteristics include EDC’s ability to bind with or 
activate hormone receptors, antagonize them, alter the expression and 
release of hormones, alter the signal transduction in responsive cells, 
induce epigenetic modifications, alter the transport across cell mem-
branes, hormone circulatory levels, and distribution, its clearance and 
ultimate fate (La Merrill et al., 2019). 

The mechanism of action of EDC resembles steroid hormones by 
either direct genomic transcriptional action of the classical receptors’ 
ligand binding complex or the nongenomic action through the second 
messenger systems. This non genomic action occurs through complex 
interactions by the activation of the Mitogen activated Protein kinase 
(MAPK) pathway or and the Nuclear Factor Kappa Beta (NF-κβ) signal 
cascade systems thereby acting as transcription factors in the nucleus. 
However, the non-genomic action of the non-classic receptors namely 
the ionic channels is the other alternative pathway mediated by the 
adenyl cyclase enzyme’s conversion of adenosine triphosphate (ATP) to 
cyclic adenosine monophosphate (cAMP). In addition, EDCs can cause 
alteration in the histones, methylation of DNA and affect the expression 
of noncoding RNA (Fig. 2) (Lösel and Wehling, 2003; Bergman et al., 
2013; Combarnous, 2017; Combarnous and Diep Nguyen, 2019; Nowak 
et al., 2019; La Merrill et al., 2019). Thus the ability of EDC to critically 
affect the cells at DNA level, RNA level, and protein expression level is 
certain. 

Recent studies show EDCs have a negative effect on bone structure 
and function. They alter the bone modeling and remodeling, and the 
release of paracrine hormones. Thereby altering the release of systemic 
hormones, cytokines, chemokines and growth factors. Their capacity to 
disrupt stem cell fate, bone marrow mesenchymal stem cell (BMSC) 
differentiation and bone marrow niche organization is well established 
(Turan and S. 2021). Malachite green (MG) have been recently included 
in the exhaustive list of EDCs as a result of its toxicity, mutagenicity, 
carcinogenicity, and teratogenicity properties. Furthermore, MG has 
respiratory toxicity and reduces the fertility of both humans and ani-
mals. In addition, conventional techniques are ineffective in treating and 
biodegrading MG. However, they can be degraded by using liquid-solid 
adsorption method like the Acid Functionalized Maize Cob (Ojediran 
et al., 2021). 

Fig. 1. Different sources of EDCs and its distribution in water, air and on land causing pollution of these natural resources and untoward effects.  
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Table 1 
The grouping and classification of EDCs with important examples and their corresponding chemical structures (IPCS WHO, 2002; Bergman et al., 2013; Patel et al., 
2020; Wojcieszynska et al., 2020; Buoso et al., 2020).  

Group Classification Examples of EDC compounds Chemical structure 

PERSISTENT BIO-ACCUMULATIVE 
HALOGENATED COMPOUNDS 

1. Persistent 
Organic 
Pollutants (POPs) 

Polychlorinated biphenyls (PCBs) 
{PubChemIDa: 6636 
MFb: C12H9ClO3S, 
MWc: 268.72 g/mol} 

Dichlorodiphenyltrichloroethane 
(DDT) 
{PubChem ID: 3036, 
MF: C14H9Cl5, 

MW: 354.5 g/mol} 

Perfluorooctanesulfonate (PFOs) 
{PubChem CID: 74483, 
MF: C8HF17O3S, 
MW: 500.13 g/mol} 

Polybrominateddiphenyl ethers 
(PBDEs) like 3,3′-Dibromodiphenyl 
Ether 
{PubChem CID: 13283773, 
MF: C12H8Br2O, 
MW: 328 g/mol} 

2. Other persistent and bio-accumulative chemicals Hexabromocyclododecane (HBCDD) 
{PubChem CID: 11763618, 
MF: C12H18Br6, 
MW: 641.7 g/mol} 

Perfluorooctanoic acid (PFOA) 
{PubChem CID: 9554, 
MF: C8HF15O2, 
MW: 414.07 g/mol} 

3. Plasticizers & Other Additives in Materials and 
Goods 

Phthalates like Di(2-ethylhexyl) 
phthalate (DEHP) 
{PubChem CID: 8343, 
MF: C24H38O4, 
MW: 390.6 g/mol} 

4. Polycyclic Aromatic Chemicals (PACs) including 
polycyclic aromatic hydrocarbons (PAHs) 
LESS PERSISTENT & LESS BIOACCUMULATIVE 
COMPOUNDS 

Benzo[a]pyrene (BaP) 
{PubChemCID: 2336, 
MF: C20H12, 
MW: 252.3 g/mol} 

5. Halogenated Phenolic Chemicals (HPCs) Triclosan 
{ PubChem ID:5564, MF: C12H7Cl3O2, 
MW: 289.5 g/mol } 

6. Non-halogenated Phenolic Chemicals (Non- 
HPCs) 

Bisphenol A (BPA) 
{PubChemCID: 6623, 
MF: C15H16O2, 
MW: 228.29 g/mol} 

(continued on next page) 

S. Antony et al.                                                                                                                                                                                                                                  



Environmental Research 213 (2022) 113509

5

Table 1 (continued ) 

Group Classification Examples of EDC compounds Chemical structure 

PHARMACEUTICALS &PERSONAL CARE 
PRODUCTS 

7. Current-use Pesticides Atrazine 
{PubChemCID: 2256, 
MF: C8H14ClN5, 
MW: 215.68 g/mol} 

Vinclozolin 
{PubChemCID: 39676, 
MF: C12H9Cl2NO3, 
MW: 286.11 g/mol} 

8. Pharmaceuticals, Growth Promoters, & Personal Care 
Product 

Levonorgestrel (synthetic 
progestagen) 
{PubChem CID: 13109, 
MF: C21H28O2, 
MW: 312.4 g/mol} 

Selective serotonin reuptake 
inhibitors (Fluoxetine) 
{PubChem CID: 3386, 
MF: C17H18F3NO, 
MW: 309.33 g/mol} 

Cyclic methyl siloxanes (D5) 
{PubChem CID: 10913, 
MF: C10H30O5Si5, 
MW: 370.77 g/mol} 

Diethylstilbestrol (DES) 
{PubChem CID: 448537, 
MF: C18H20O2, 
MW: 268.3 g/mol} 

9. Metals & Organometallic Chemicals Methylmercury 
{PubChem CID: 6860, 
MF: CH3Hgz, 
MW: 215.63 g/mol} 

10. Natural Hormones 17β-Estradiol 
{PubChem CID:5757, 
MF: C18H24O2, 
MW: 272.4 g/mol} 

Estrone 
{PubChemCID: 5870, 
MF: C18H22O2 

MW: 270.4 g/mol} 

11. Phytoestrogens 

(continued on next page) 
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3. Effects of EDCs on ecology and human health 

3.1. Ecological concerns associated with EDC 

The negative impact our expansion has brought upon the environ-
ment is visible as macro-pollutants and invisible as micro-pollutants, 
only to be manifested years later. The harmful effect of EDC on the 
ecosystem and its inhabitants is evident in analyzing different members 
of the food chain. The inhibitory role on amino acid synthesis or 
photosynthetic ability is some effects of EDC such as herbicides, and 
plasticizers such as bisphenol A on plants (Kim et al., 2018). Moreover, 
Polychlorinated biphenyls and dioxins in the form of fertilizers are 
found to bioaccumulate in plants subsequently in herbivores that 
consume those (Antolin Rodriguez et al. 2016; Di Guardo et al., 2020; 
Han et al., 2022). Such bioaccumulation and associated bio-
magnification in different fishes and wildlife is also reported (Godfray 
et al., 2019). The high incidence of EDC in drinking water and aquatic 
systems is a true indication of the extent of its transmissibility to various 
living forms (Gonsioroski et al., 2020; Wee and Aris, 2019; Pironti et al., 
2021). 

As noted in the fish and mammals EDC critically affect the devel-
opment of gonads, induce sexual malformations, and change the onset of 
puberty (Delbes et al., 2022). Exposure to EDC during their development 
cause impairment of gonads, gamete development, and function of egg 
and sperms of bivalve molluscs (Luckenbach et al., 2009). Exposure to 
chemicals such as vinclozolin and dicofol causes impaired embryonic 
development of planktonic crustaceans such as Daphnia (Haeba et al., 
2008). EDC such as 4-tert-Octylphenol (4-tOP) and triclosan (TCS) 
represent highly prevalent pollutants in the air, water, and soil 
ecosystem and they are found to cause imbalances in algae, fish, and 
daphnids (Olaniyan and Okoh, 2020). Toxicity studies with persistent 
organic pollutants (POPs) and endocrine-disrupting chemicals (EDCs) 
on Caenorhabditis elegans indicate that they could cause oxidative stress, 
apoptosis, and disruption of insulin/IGF-1 signaling pathway (Chen 
et al., 2019). The persistence and progression of EDC in the ecosystem 
are found to aggravate by increasing temperature globally on climate 
change as well they are also found to contribute to the development of 
non-communicable diseases such as diabetes (Kumar et al., 2020). 

Table 1 (continued ) 

Group Classification Examples of EDC compounds Chemical structure 

Coumestrol 
{PubChemCID: 5281707, 
MF: C15H8O5, 
MW: 268.22 g/mol} 

a PubChem CID:Compound ID number. 
b MF- Molecular formula. 
c MW- Molecular weight. 

Fig. 2. The general mechanism of action of different EDCs involves three pathways.  
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3.2. Human health concerns associated with EDC 

Exposure to EDCs seems to be strongly associated with dysfunction of 
reproductive and developing systems when observed over the back-
ground of known influences and the changes in current human health 
trends warrant concern and the need for high research priority in un-
derstanding these mechanisms (Diamanti-Kandarakis et al., 2009; Kiess 
et al., 2021). The difficulty in analyzing human studies is to really 
comprehend the impact of EDCs on health. Though often conducted 
using various experimental designs and exposure conditions at different 
time intervals, it is difficult to predict the propensity to develop the 
disease later in adult life and follow them up. Despite finding difficulties 
in establishing a direct causal association to EDCs, exposure to them has 
been attributed to numerous adverse health outcomes and subsequent 
involvement of various systems (Fig. 3). 

In the male reproductive system, primarily, there are two effects that 
have been most commonly attributed to EDCs; they are deranged 
reproductive function which manifests as a decline in semen quality, and 
infertility (Maffini et al., 2006). EDC causes disrupted fetal development 
which manifests as urogenital abnormalities such as cryptorchidism and 
hypospadias (Skakkebæk et al., 2001; Kumar et al., 2020). Nevertheless, 
evidence on the temporal trends of both the above-mentioned effects is 
poorly explained by existing studies and several meta-analyses. Studies 
had done yet have always been retrospective and the direct causal as-
sociation of EDCs remains speculative. Available human and experi-
mental animal studies show that a number of chemicals can derange the 
development of the male reproductive tract via endocrine mechanisms. 
Moreover, several disorders of the female reproductive system such as 
ovulatory dysfunction (PCOS), disorders of lactation and other breast 
diseases (Fenton, 2006; Kawa et al., 2021) endometriosis, and uterine 
leiomyomas have been associated with EDCs (McLachlan et al., 2006; 
Newbold et al., 2007). Premature thelarche has also been reported 
following exposure to phthalates (Li et al., 2006) and sexual precocity 
related to DDT exposure (Diamanti-Kandarakis et al., 2009) have also 
been recorded although both these data need to be replicated. A 
neuroendocrine mechanism was proposed as a result of experiments 
conducted on rodents. The interrelation of sexual precocity and ovula-
tory disorders with EDCs can be indirectly attributed to IUGR at birth 
and metabolic syndrome in adolescence (Ibáñez and de Zegher, 2006). 

A substantial increase in the incidence of breast cancer among 

women in the industrialized world, observed during the span of the last 
50 years has been attributed the exposure to hormonally active EDCs 
especially xenoestrogens (Davis et al., 1993; Akhbarizadeh et al., 2021). 
The incidence of rare vaginal cancers was also seen in daughters of 
mothers who received DES (Diethylstilbestrol); this may be an unprec-
edented response to in utero exposure of high dosage of DES or due to 
the compound itself activating various pathways. Other EDCs may not 
contribute to this but may lead to reproductive changes as mentioned 
above (Swan, 2000). Significant correlations have been made between 
prostate cancer and pesticides like organochlorines and thiophosphates, 
among which many of them are acetylcholine esterase inhibitors and 
also have the ability to inhibit major p450 enzymes. These enzymes are 
responsible for the metabolism of many steroid hormones like estradiol, 
estrone, and testosterone, thereby disrupting the normal hormonal 
balance and may lead to the development of prostate cancer (Alavanja 
et al., 2003; Mahajan et al., 2006). EDCs have been reported to disrupt 
the link between developmental programming and reproductive matu-
ration as pointed out by the interrelationship between carcinoma in situ 
in the fetal testis to the development of testicular cancer in adulthood. 
This is a representation of the links between incidence of adult disease 
and fetal environment, although a definite correlation has not yet been 
established (Bay et al., 2006; Sharpe, 2006). 

In addition, reduced circulating levels of thyroid hormones has been 
attributed to a large number of industrial chemicals, which can act 
through various mechanisms such as hormone synthesis, release, 
transport of thyroid hormones in the blood, their metabolism, and 
clearance (Brucker-Davis, 1998; Howdeshell, 2002). EDCs can also have 
neurobiological and neurotoxic effects along with endocrine effects on 
other neuroendocrine systems, especially neuroendocrine cells found in 
the brain (Diamanti-Kandarakis et al., 2009). The rise in the incidence of 
such complex diseases with multifactorial causality equals the height-
ened use of industrial chemicals which suggests that EDCs may be linked 
to this modern era epidemic (Baillie-Hamilton, 2002). However, owing 
to poor evidence regarding the same, further research is needed to 
elucidate all possible interactions between a wide spectrum of industrial 
chemicals and metabolic deregulation. 

4. Physico-chemical strategies in remediation of EDCs 

Over the past couple of decades, our acceptance of different 

Fig. 3. The impact of EDCs on human health, the hazards and the factors depending on which the progress of health issue occur.  
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chemicals to be an endocrine disruptors or have the potential is 
increasing owing to solid data from research, toxicity analysis, and 
mounting evidence following risk assessments on their impact on the 
environment (Bergman et al., 2013; Patel et al., 2020; Buoso et al., 
2020). As more EDCs are being added and are ubiquitous in nature, 
there is a proportional enlargement of non-regulated pollutants; hence 
its mitigation strategies need to be looked carefully in greater depth and 
with more understanding starting from the conventional. The early 
measures of removal of EDCs ranged from crude processes such as ex-
cavations and landfilling, incineration, to complex oxidation processes 
photodegradation, dechlorination, and electrocatalytic processes. The 
various physico-chemical ecofriendly approaches are detailed below. 

4.1. Chemisorption by activated carbon 

It is a process commonly used for the removal of organic waste and 
carbon by utilizing activated carbon either in its powdered or granular 
format. It is specifically effective in treating EDCs in wastewater. This 
adsorptive technology though has been grasped; it is extremely depen-
dent on the optimal pH, optimal temperature, adsorbent’s dose, and 
presence of any interfering substance. It is not suitable for large-scale 
applications (Haq and Raj, 2018; Gao et al., 2020). Several interactive 
forces are involved in the adsorption mechanism, which includes 
hydrogen bonding, pore filling, hydrophobic interactions and π-π in-
teractions. These processes can result in energy and economy compro-
mises through pyrolysis and additional activation steps by gases or 
chemical agents. It has been noted that this process is efficacious in 
removing EDCs. Eg. Acetaminophen, Caffeine, Erythromycin-H2O Sul-
famethoxazole, Fluoxetine, Pentoxifylline, Meprobamate, Dilantin. 
However, its efficacy is affected when the natural organic matter get 
attached to its binding site and block its pores (Snyder et al., 2007). 
Metal-organic frameworks have attracted attention as a novel porous 
material, particularly for the adsorption of EDCs from aqueous solutions. 
When compared to traditional adsorbents, several controllable charac-
teristics such as customizable porosity, hierarchical organization, huge 
surface area and pore volume, superior adsorption and recyclability 
capabilities provide a new perspective. The use of appropriate metal 
clusters, surface modifiers, and organic linkers can justify their selec-
tivity for the removal of various EDCs (Aris et al., 2020). 

4.2. Membrane technologies 

Most water pollutants are removed using membranes which are 
permeable and made up of thin material layers. It works based on the 
mesh size of the membrane which aids in the elimination of microbes 
and salt from the water. It selectively filters and removes the pollutants 
which are bigger than the pore size and allows the small-sized con-
taminants and water molecules to pass through (Katibi et al., 2021). 

These technologies involve either a pressure-based or electricity- 
based separation with microfiltration, ultrafiltration, nanofiltration, 
and reverse osmosis utilizing the pressure. Microfiltration and ultrafil-
tration used in membrane bioreactors in water treatments do not have 
any barrier effect on EDCs removal in general. However, due to 100% 
particle retention, which promotes the EDCs removal through adsorp-
tion to sludge flocs, a high rate of EDC removal may be predicted when 
compared to typical purification methods (Wintgens et al., 2004). Both 
Nanofiltration and reverse osmosis are efficient in EDCs separation, 
chiefly for phytoestrogens, PAH, xenoestrogens, synthetic hormones, 
etc. However, for low molecular weight substances reverse osmosis is 
preferred (Haq and Raj, 2018). 

4.3. Advanced oxidation processes 

Initial oxidation processes used oxidants are used to convert EDCs to 
less toxic forms by a redox reaction. This technique uses chemicals like 
dichlorine (Cl2), Chlorine dioxide (ClO2), Hydrogen peroxide (H2O2), 

and processes like ozonisation. This was useful with estrogens remedi-
ation. Here too optimal technical conditions, pH, high costs. Moreover, 
researchers noted numerous remnants being persistent even after a 
chemical oxidative process; hence it is not in favor anymore. However, 
newer modifications i.e. the photocatalytic technology boast of high 
degradation and mineralization abilities by using sunlight as the energy 
source. Here no to fewer toxic byproducts are left over after the process. 
Generally, semiconductor materials are used like titanium dioxide 
(TiO2) and zinc oxide (ZnO). There are a lot of nanocomposites being 
tried out as photocatalysts (Haq and Raj, 2018; Gao et al., 2020; Wang 
et al., 2020). 

5. Microbial degradation of EDC 

The search for the best management processes which are able to 
better neutralize the hazardous chemicals lead to the discovery of 
biodegradation processes, especially those involving microorganisms 
(Sotelo et al., 2012; Hazra et al., 2014; Rovani et al., 2014; Donati et al., 
2019; Hernández-Abreu et al., 2020; Eltoukhy et al., 2020; Zhang et al., 
2021). The skyrocketing costs, non-biocompatibility, large-scale reagent 
requisition, and formation of resultant secondary toxic products limits 
the value of the conventional approaches (Dangi et al., 2019). Biore-
mediation is the process where microbes are employed to breakdown 
hazardous chemicals completely or reduce them to less toxic products. 
The use of microbes came to the forefront because of their attractive 
properties of being eco-friendly, lower costs involved, fewer space 
constraints, and equipment demands (Gao et al., 2020; Pang et al., 2020; 
Singh et al., 2021a). Thereby, they conveniently degrade EDCs faster by 
using them as an energy source, and altering it into less toxic and benign 
byproducts while avoiding in entirety, the use of chemicals and 
conserving natural resources. In order to better escalate the efficiency 
and shrink the long process, nutrient sources, and biological catalysts, 
are added (Cajthaml, 2015; Zhang et al., 2016; Patel et al., 2020; Woj-
cieszynska et al., 2020; Roccuzzo et al., 2021). 

The most sought organisms include bacteria, fungi, and microalgae 
as noted in Table 2 (Jaiswal and Shukla, 2020; Kalra et al., 2021; Tran 
et al., 2021). The remediation processes may be undertaken aerobically 
or anaerobically in bacteria. The bacteria commonly used are Achro-
mobactersp., Alcaligenes sp.,Burkholderiasp.,Comamonassp., Dehalo-
coccoidessp., Pseudomonas sp., Ralstoniasp., Rhodococcussp., and 
Sphingomonassp. While fungi used includes Pleurotusostreatus, Fusarium 
sp., Phanerochaetechrysosporium, Trametes versicolor, Aspergillus sp., 
Fomitopsis palustris, Pythium ultimum, Stereumhirsutum, Candida aqua-
textoris, etc. (Cruz-Morató et al., 2014; Cajthaml, 2015; Zhang et al., 
2016; Dangi et al., 2019; Mohammadi et al., 2021). 

The mechanisms involved in the breakdown of EDCs by these bac-
teria are biodegradation and biotransformation with the help of en-
zymes like hydrogenases, dehydrogenases, dioxygenases, hydroxylases, 
transferases, and laccases. This is similar to microalgae where they too 
cause the EDCs to undergo biotransformation with help of laccases, 
manganese peroxidases and cytochrome P-450. On the other hand, in 
fungi only biotransformation is similar to bacteria and microalgae, while 
the other mechanisms like bioadsorption and bioaccumulation of EDCs 
are done by the help of enzymes peroxidases, cytochrome P-450, and 
glutathione s-transferases (Wojcieszynska et al., 2020). A meta-analysis 
reported that there is an effect of EDC class, the members within the 
EDC group, and dissimilar organism class on the exposure time. In 
addition, the complexity of the EDC affected the bioremediation while 
organism class did not have a significant effect. Moreover, the delivery 
mechanism of the organism and the carrier material greatly influenced 
biodegradation (Roccuzzo et al., 2021). 

6. Traditional approaches in bioremediation of EDCs 

Microbes may occupy the areas polluted by EDCs indigenously or are 
artificially introduced to that zone to minimize the drastic effect of these 
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harmful compounds either through in-situ or ex-situ methods (Chaudhary 
and Kim, 2019; Singh et al., 2021a). As evident by the name in-situ 
bioremediation are measures done directly at the location site without 
any diggings or transfer, while in ex-situ, off-site remedial methods are 
undertaken whereby the EDC contaminated soil or water are transported 
to another locality for processing outside the original area of contami-
nation (Fig. 4). In-situ measures aid in detoxifying dyes, solvents which 
are chlorinated, heavy metals, and polluted sites with hydrocarbons 
(Chandra and Kumar 2017; Chaudhary and Kim, 2019; Singh et al., 
2021a). 

6.1. In-situ bioremediation measures 

6.1.1. Natural attenuation 
This is a relatively an inexpensive and less arduous way by which the 

contaminants are naturally reduced with help of physical, chemical, and 
biological transformation which results in stabilization of the contami-
nants. However, it is time-consuming and in some cases, unintended 
leaching may occur (Azubuike et al., 2016; Donati et al., 2019; 
Chaudhary and Kim, 2019; Janssen and Stucki, 2020). 

6.1.2. Enhanced attenuation 

6.1.2.1. Bioventing and bioslurping. It is the process of instilling air in a 
regulated manner to the microbes inherent in the contaminated area, 
thereby promoting the growth of indigenous microbes. This process is 
further enhanced by supplying nutrients and other substrates needed for 
the microbe. In addition, the delivery of high flow rate ensures the 
clearing of volatile and non-volatile materials through physical and 
biological means respectively (Chaudhary and Kim, 2019). Additionally, 
Bioslurping is a combination of bioventing along with the use of vacuum 
and vapour extractors with the aim of providing oxygen and there by 
enhancing the degradation process. It creates a straw-like effect or a 
‘slurp’ of liquids which can then be processed by bioslurping, for the 
removal of volatile to semi-volatile compounds and light non-aqueous 
phase liquids (LNAPLs). However, it is noted that factors like exces-
sive soil moisture, and saturated lenses in soil affect the technique 
negatively (Azubuike et al., 2016). Bioventing technique are used to 
reduce BETX (benzene, toluene, ethylbenzene and xylenes) complex 
compounds and petroleum hydrocarbon (Bijalwan A. and Bijalwan V. 
2016). 

6.1.2.2. Biosparging. Similarly, to bioventing, in biosparging there is a 

Table 2 
An overview of microbial degradation of EDC.  

Name of organism Treated pollutant Mechanism Reference 

Bacteria 
Pseudomonas 

aeruginosa, 
Pseudomonas 
lutoi 

bisphenol Enzyme mediated Al-Hashimi, 
(2018) 

Mycobacterium sp. 
DBP42, 
Halomonas sp. 
ATBC28 
(marine 
isolates) 

dibutyl phthalate 
(DBP) and bis(2- 
ethyl hexyl) 
phthalate (DEHP), 
acetyl tributyl 
citrate (ATBC) 

Esterases and 
enzymes involved in 
the β-oxidation 
pathway 

Wright et al. 
(2020) 

Pseudomonas 
putida strain 
YC-AE1 

Bisphenol A Enzyme mediated Eltoukhy et al. 
(2020) 

Fungi 
Diaporthe 

longicolla 
bisphenol Laccase mediated Baluyot et al. 

(2022) 
White rot fungi bisphenol A, 

bisphenol S, and 
nonylphenol from 
wastewater 

Ligninolytic 
enzymes such as 
laccase, manganese 
peroxidase, lignin 
peroxidase, and 
versatile peroxidase 

Grelska and 
Noszczyńska, 
(2020) 

Trametes 
versicolor 

EDCs, such as 
phenols, parabens 
and phthalate 

Lignolytic enzymes Pezzella et al. 
(2017) 

Yeasts such as 
Candida 
rugopelliculosa 
RRKY5, 
Galactomyces 
candidum 
RRK17 and G. 
candidum 
RRK22 

estrogenic 
alkylphenols 

Enzyme mediated Rajendran 
et al. (2016) 

Algae 
Green algae 

Nannochloris sp. 
17β-estradiol (E2), 
17α- 
ethinylestradiol 
(EE2), and salicylic 
acid (SAL) 

Bioadsorption and 
bioaccumulation 

Bai and 
Acharya, 
(2019) 

Green algae, 
Chlorococcum 
sp. or 
Scenedesmus sp 

Endosulphan Biosorption, coupled 
with their 
biotransformation 

Sethunathan 
et al. (2004)  

Fig. 4. The various conventional and novel bioremediation strategies employed in EDCs degradation.  

S. Antony et al.                                                                                                                                                                                                                                  



Environmental Research 213 (2022) 113509

10

drive for volatile compounds from saturated to unsaturated zones 
(Chaudhary and Kim, 2019). It is used to treat aquifers contaminated 
with diesel and kerosene (Sharma et al., 2021). 

6.1.2.3. Bioleaching. It is a highly used technique in mining to separate 
metal from mineral ores. Similarly, the microbes which are acidophilic 
are used to decrease the metal impurities in residues which further 
makes it easy to remediate the EDCs in that sediment (Fonti et al., 2016). 

6.2. Ex-situ bioremediation measures 

6.2.1. Bioaugmentation 
Besides the addition of a microbe to the contaminated site, extra 

growth potentiating factors are supplied to enrich the process of biore-
mediation. The use of co-metabolism wherein biosurfactants producing 
microbes like Pseudomonas, Acinetobacter, Rhodococcus, Micrococcus, and 
Bacillus, or using a recombinant pool of microbes or the usage of a 
consortium of different microbes each acting as a separate catalyst can 
really augment and improve the turnover time of remediation process. It 
is used for the partial removal of polychlorinated biphenyl, 2, 4-6-tri- 
chlorophenol and Atrazine. Eg: 2, 4-6- trichloro phenol is removed by 
adding Alcalgenes eutrophus TCP strain (Phale PS et al. 2019). However, 
there is a restriction on the use of non-indigenous microbes and the 
entire process is very dependent on the environmental factors 
(Chaudhary and Kim, 2019; Joe et al., 2019; Singh et al., 2021a). 

6.2.2. Biopile 
This process involves piling contaminated soil with EDCs and 

providing the appropriate temperature, moisture, nutrients, and oxygen 
to promote the microbiological action. It is an effective technique to 
treat large volumes of soil in a limited space. However, operations cost 
management and electricity supply are the major limitations (Azubuike 
et al., 2016; Chaudhary and Kim, 2019; Singh et al., 2021a). Acidic 
petroleum sludge can be treated with biopile technique thereby 
reducing the volume of the sludge (Naeem U and Qazi MA 2020). 

6.2.3. Biostimulation 
The process of bioremediation is enhanced by supplying nutrients, 

especially nitrogen, phosphorous, moisture, oxygen, optimal pH, and 
temperature in the area contaminated with EDCs. This may be expedited 
by the use of surfactants, spray foams, etc. The main highlight is that this 
process favors the multiplication of indigenous microbes, allows better 
bioavailability for contaminants, and improves the nutrition of the soil. 
However, issues of algal blooming, toxic surfactants increase may be 
faced (Chaudhary and Kim, 2019; Singh et al., 2021a). Biostimulation 
techniques are used to reduce BETX (benzene, toluene, ethylbenzene 
and xylenes) complex compounds, oil spils and petroleum hydrocarbons 
(Simpanen S et al., 2016, Nikolopoulou M, and Kalogerakis N 2010). 

6.2.4. Bioreactor 
The bioprocess occurs in a sealed-off reactor under controlled con-

ditions i.e. optimum pH, temperature, constant agitation, and oxygen 
along with the degrading microbe and waste being efficiently removed. 
This is suitable for numerous applications both aerobic and anaerobic in 
controlled laboratory settings and for conduct of novel studies 
(Chaudhary and Kim, 2019; Singh et al., 2021a). It is useful for the 
effective removal of endocrine disruptive chemicals including com-
pounds with nitrates, herbicides, pesticides, and organic and inorganic 
contaminants from the water. Thus being used in municipal and in-
dustrial waste-water treatment, ground and drinking water abatement, 
and odor control (Cicek, 2003). 

6.2.5. Phytoremediation 
Plants such as Brassica juncea L., Salix alba L., Populus deltoides L., 

Helianthus annuus L., etc are used to remove volatile contaminants in soil 

and water. Phytoremediation is an eco-friendly technique to detoxify the 
soil, but the chance of toxic products being left behind in the soil also 
does occur (Azubuike et al., 2016; Chaudhary and Kim, 2019; Singh 
et al., 2021a). Peroxidase enzyme produced by the plant root promotes 
detoxification by removal of phenol and chlorophenol (Singh AK et al. 
2021). Petroleum hydrocarbons, chlorinated solvents, pesticides, 
metals, radionuclides, explosives, excess nutrients, atrazine, poly-
chlorinated biphenyl, and hydrophobic organics like pentacholro phenol 
are removed using this bioremediation technique (Tabei K and Sakaki-
bara Y 2006). 

6.2.6. Land farming 
Land farming comprises periodic tilling of land to provide better 

aeration and growth supporting conditions to indigenous microbes 
involved in decontaminating soil (Azubuike et al., 2016; Chaudhary and 
Kim, 2019). 

6.2.7. Composting 
Composting involves the microbial conversion of plant-based mate-

rial of contaminated soil to organic soil amendments with simultaneous 
removal of xenobiotics. It is an environment-friendly technique, though 
it requires a big space and frequent aeration (Azubuike et al., 2016; 
Chaudhary and Kim, 2019). It is useful for the removal of petroleum 
hydrocarbons (Yaohui Xu and Mang Lu 2010). 

7. Newer trends and sustainable alternative technologies 

The conservative approaches had many drawbacks which included 
lengthy processing time and cost, whereas some methods required 
space, constant aeration, and mixing, others presented a multitude of 
issues including toxic waste dissemination, leaching and incomplete 
degradation of EDCs (Azubuike et al., 2016; Chaudhary and Kim, 2019; 
Singh et al., 2021a).This forced us to delve into and think harder to come 
out with ground-breaking approaches to bridge the gap despite the fact 
that the already existing techniques did try to address the issue of EDCs 
at hand. Newer approaches targeting EDCs but within the specific time 
frames, space, and other constraints were pursued. Using technological 
advancements in science to our advantage and viable substitutes, 
ranging from modifying existing enzymes, using gene editing tools like 
CRISPR and genetic engineering, metabolic and protein engineering and 
last but not the least using prediction strategies to either delay or pre-
vent the formation of toxic substances (Fig. 5) (Liu et al., 2019; 
Chaudhary and Kim, 2019; Janssen and Stucki, 2020; Sakshi and Har-
itash, 2020; Bhatt et al., 2021; Singh et al., 2021b; Tran et al., 2021). 

7.1. Enzymatic approaches and protein engineering 

Microbial enzymes are capable of breaking down the harmful con-
tents in the soil or water. Hence, either the entire microbe per se or only 
the isolated enzyme may be used for bioremediation of EDCs. The use of 
extracellular enzymes alone provides stability, specificity, mobility, 
biodegradability, ease of storage, and handling. Unlike the entire 
microbe which demands explicit conditions, nutrients, and balance. In 
normal situations and settings, the production of the enzyme may be 
low. Nonetheless, enzyme use as a standalone tool for speeding up 
bioremediation measures is noteworthy (Ravichandran and Sridhar, 
2016; Wang et al., 2018; Chowdhary et al., 2019; Lee et al., 2019; 
Wojcieszynska et al., 2020; Mousavi et al., 2021; Singh et al., 2021a). 
The use of metabolomics, proteomics, and genetic engineering has been 
able to help with upgrading its abilities (Jaiswal et al., 2019; Sakshi and 
Haritash, 2020; Méndez García and García de Llasera, 2021; Singh et al., 
2021a). The classical enzymes harnessed for their prowess in bioreme-
diation, to name a few, are the peroxidases (lignin, laccase, manganese, 
and versatile peroxidases), oxygenases (mono- or di-), hydrolases 
(esterase, lipase, aminohydrolase, nitrilase, cutinase, and organophos-
phorus hydrolase), phosphodiesterases, halogenases, transferases, and 
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oxidoreductases (Bansal and Kanwar, 2013; Cajthaml, 2015; Eibes et al., 
2015; Mousavi et al., 2021). Protein engineering has proved beneficial 
in improving the enzymatic approach further. The existing proteins are 
modified to gain better and novel spectrum including improving cata-
lytic activities, stability, regulatory control and localization. Enzyme 
chimera may help to get the best of different structures and generate 
more potential enzymes with more scope for engineering further to get 
better enzymes for degrading EDCs (Li et al., 2020). Falade et al. 
investigated a number of ligninolytic enzymes such as laccase, peroxi-
dase, etc. in EDC removal from wastewater (Falade et al., 2018). 

7.2. Metabolic engineering and gene editing 

Metabolic engineering in bioremediation is performed to construc-
tively alter the microbe’s metabolic pathway for ultimately detoxifying 
the various EDCs. The description and categorization of the various 
metabolites produced by microbes under stress will aid in choosing the 
best approach. These metabolites intensify interactions and thereby 
improve processes by providing better stability, bioavailability, and 
additional properties like biofilm formation. The tweaking of the exist-
ing pathways improved the yield and increased the amendment of the 
EDCs to safe options by better enzyme action and increasing the 
bioavailability for neutralization of the toxic component. It also 
improved the range of degradation of various EDC substrates and 
allowed for new functions absent in the original naïve microbe. Intro-
duction of novel gene clusters, performing regulatory engineering, 
knock-out and knock-in of genes and stimulating precursors for early 
response and action are some of the possible of metabolic engineering 
(Cuperlovic-Culf, 2018; Dangi et al., 2019). The application of compu-
tational biology has greatly aided in improving the targeting of novel 
molecules. It may be either a reference-based reconstruction or de-novo 
synthesis followed by experimental validation and finally field testing 
(Dangi et al., 2019). 

The main gene editing tools with the bio-remedial application 
include Zinc finger nucleases, Transcriptional activator like effector 
nucleases and Clustered regularly interspaced short palindromic re-
peats- CRISPR associated (CRISPR-Cas) systems. They act like molecular 
scissors causing double stranded breaks in gene of interest followed by 
different repair mechanisms ultimately creating microbes with better 
bioremediation potential. However, the major disadvantages include 

mutations and accidental dissemination of the modified microbe 
(Canver et al., 2018; Jaiswal et al., 2019; Li et al., 2020; Tran et al., 
2021). 

7.3. Genetically engineered microbes 

Although there is a daily exponential surge in the generation of EDCs, 
the existing bacteria are known to aid in bio-remedial activities either in- 
situ or ex-situ have the major limitation of being slow and the entire 
restoration is a time-consuming process (Liu et al., 2019; Janssen and 
Stucki, 2020; Tran et al., 2021). Therefore, the design and development 
of novel microbial scavengers is a feasible eco-friendly trend. It has been 
based on the different omics technologies, engineering whereby a 
modification of the enzymes, new pathway generation, better control 
over various bio parameters, and biosensing capabilities are targeted 
(Liu et al., 2019). 

The entire process of generating a new GMO is long and complex. 
Initially, the microbes are screened for favorable traits which improve 
the naïve microbe hence the first step is identification, this is followed by 
evaluation of the traits and these modifications are undertaken by re-
combinant DNA technology or other methods of genetic engineering. 
The new microbe has improved degrading activities and is now re- 
evaluated for the traits. Different toxicological tools were used for the 
detection of the quantity of the products. Finally, the microbe is ready 
for field testing at the application level (Donati et al., 2019; Liu et al., 
2019). 

The use of metagenomics in using the whole genome sequences and 
designing modified microbes is being looked into. Its ability to predict 
the causes changes in sequence would bring about is noteworthy. 
However, this field is rapidly evolving with new concepts, field testing, 
and newer genetically modified organisms being researched widely 
(Singh et al., 2021b). GEMs are superior scavengers with stable prop-
erties like catabolism, metabolism, and degradation enzyme activities 
(Liu et al., 2019; Chaudhary and Kim, 2019; Janssen and Stucki, 2020; 
Singh et al., 2021a). However, the ability of tinkering with genes have 
prompted adoption of stringent laws and regulations internationally. 
Australia, France, Germany, Algeria, Madagascar, Turkey, Bhutan, Peru, 
Venezuela, Belize are few countries to have banned all GMOs usage in 
their respective countires (Sharma P et al., 2022; Prakash D et al., 2011; 
Countries That Ban Gmos 2022). 

Fig. 5. The novel approaches involving enzymatic, protein engineering, in-silico predictive metabolic and gene editing for bioremediation of EDCs.  
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7.4. In-silico predictive approaches 

Mankind has taken giant leaps in computational technology, the 
great benefit of this omnipresent technology has, is that it is rapidly 
adapting and bringing change which may be used to our advantage in 
diverse aspects of bioremediation. The capabilities of software to predict 
a target based on its chemical properties or predict its likelihood of 
getting degraded before it is even produced or once after production 
how to degrade it best. This robust system may be exploited and novel 
bioremediation strategies may be defined. The different algorithms and 
tools available online may suit multifarious applications starting from 
the prediction of novel chemical compounds, their toxicity, the path-
ways involved in their degradation, biotransformation, and validation of 
different models (Pavan et al., 2006; Leusch et al., 2019; Zhou et al., 
2020; Singh et al., 2021b). 

There are ligand-based and structure-based methods. The expert 
systems QSARmodel belongs to the former and is one of the simplest 
prediction tools which uses binary signs for a given character and is 
among the least expensive technique. It uses molecular descriptors 
which uses the molecule as a whole and further characterization based 
on dimensions and characteristics including molecular weight, atoms, 
bonds, rings, and geometry to be classified as either as one dimensional 
or two dimensional or three dimensional or four dimensional. The major 
drawback is that is very experimental in nature and that erroneous data 
initially may lead to a complete failure of a generation of products of 
expectation (Schneider et al., 2019; Celino-Brady et al., 2021; Goya--
Jorge et al., 2021). 

Structure-based or target-based molecular docking studies and dy-
namics simulations are useful in envisaging targets for bioremediation. 
They sample the space confirmation of the ligand in the binding point of 
a target. The protein-ligand complex interactions are screened by visu-
alization and suggestions for targets are made accordingly and ulti-
mately they are evaluated by scoring. They rely on bioinformatics tools 
and algorithms to achieve this optimization. Akin to ligand-based 
methods this too has the potential for errors; also the whole parame-
ters may be biased especially with relation to ligand binding in-
teractions. Comprehensive databases with large amount of data need to 
be built reliably (Srinivasan et al., 2019; Schneider et al., 2019; Singh 
et al., 2021b). The different simulation programs include Abalone, 
Assisted Model Building with Energy Refinement (AMBER), CHARMM, 
Desmond, GROMACS are offline and developed based on force field 
(FF). Similarly open, free, academic and commercial software with a 
clearly defined algorithms like Glide (QPLD algorithm), AutoDock (La-
marckian Genetic Algorithm), Vina (Energy Scoring Function), UCSF 
Dock (Geometric Matching Algorithm), SwissDock, GOLD (genetic al-
gorithm), etc. are molecular docking programs with application in 
prediction of targets for bioremediation (McRobb et al., 2014; Vuorinen 
et al., 2015; Du et al., 2017; Chen et al., 2018; Sun et al., 2019; Singh 
et al., 2021b). 

Another upcoming field using computational biology systems is the 
different bioremediation predictive pathways (PPs). The complex EDCs 
can be broken down into the simpler or the simplest molecule with the 
help of this strategy and their biodegradation worked out. SMILES are 
the chemical descriptor used and data is uploaded for analysis. There 
may be biochemically based and non-biochemically based PPs. The 
major limitation of non-biochemical-based prediction is that they rely 
on statistical probabilities and in real life that may not hold true, espe-
cially with regards to the structural modifications. However, biochem-
ically based PPs work on the principle of information rules for 
biotransformation. The various prediction pathways for bioremediation 
include BIOWIN, CATABOL, CRAFT, EAWAG-BBD Pathway Prediction 
System, enviPath, from Metabolite to Metabolite (FMM), Metarouter, 
OASIS, PathPred, Zeneth, etc. The major limitations faced include high 
costs, resources, and inadequate databases, difficulty in the validation 
and field testing (Vuorinen et al., 2015; Sun et al., 2019; Celino-Brady 
et al., 2021; Singh et al., 2021b). 

7.5. Biosurfactants 

Surfactants are chemical compounds which cause a reduction of 
surface tension and has diverse applications in agriculture, industry 
including detergent, cosmetics, remediation, and neutralization of pol-
lutants. They may be anionic, cationic, zwitterionic, or nonionic sur-
factants. They can further sub-classified as synthetic surfactants and 
biological or biosurfactant (Ng YJ et al., 2022). 

Biosurfactants are of particular interest in bioremediation, since they 
are non-toxic, biodegradable, and biocompatible (Onaizi SA. 2022). 
They are sub-categorised as glycolipids, fatty acids, phospholipids, 
polymers, and lipopeptide groups. They help mainly in bioremediation 
of contaminated soil and water, due to their foaming ability, specific 
activity, and high selectivity under a wide range of pH, temperature, and 
salinity (Malkapuram ST et al. 2021) Biosurfactants like rhamnolipids 
are used for the removal of Bisphenol A (BPA) from wastewater. How-
ever, their action is dependent on several parameters like the concen-
tration of BPA in the wastewater, the reaction time, temperature, and 
salinity of the water (Ng YJ et al., 2022). 

7.6. Biofilm based approaches 

Biofilms are a community of microbial cells which are attached to the 
substrate surface by extracellular polymeric substrates (EPS). They are 
highly complex, heterogeneous, and three dimensional structures which 
occur on the surfaces like soil, sediments, and water (Sandhya M et al., 
2022). The matrix of biofilm contains lipids, exopolysaccharides, pro-
teins, e-DNA, metabolites, particulate materials, and cell-lysis products. 
The different stages of their development begin with reversible adhesion 
to a surface, followed by irreversible adhesion, EPS production, micro-
colony formation, maturation, and finally dispersal of the mature bio-
film (Balan B et al., 2021). 

Its wide adaptability, biomass, excellent capability to absorb, 
immobilize, are being harnessed to undertake complete degradation of 
the toxic pollutants. The genetically modified Bacillus subtilis strain, 
(N4/pHTnha-ami) which produces biofilm having the potency to 
biodegrade organonitriles completely from wastewater (Balu S et al., 
2020). EDCs which can also be detoxified include the hydrocarbons 
(4-chlorophenol (4-CP), 2, 4- Dicholophenol (2, 4-DCP), 17α-ethinyles-
tradiol (EE2), bisphenol A, pesticides, and heavy metals (Catania V et al., 
2020). 

7.7. Nanotechnology 

Nanomaterials are the building blocks of Nanotechnology, with sizes 
ranging between 1 and 100 nm (Kuhan et al.2022). They include 
nanoparticles, nanotubes, nanofilms, etc. They have wide scale usage in 
medical, pharmaceutical, food and agriculture, environmental, elec-
tronic, material engineering, and other industrial processing technolo-
gies. Their properties like high surface area, pore size, optical, 
catalytical, and magnetic properties, antimicrobial activity, and surface 
chemistry make them ideal candidates for multiple applications espe-
cially in remediation of EDCs by water treatment as adsorbents, sensors 
for water quality monitoring, and disinfection, and for preparation of 
high-quality nanomembranes. Thereby, making these nanoparticles 
more flexible, highly efficient, high performance, and low maintenance 
(Kuhan R et al., 2022; Bhateria R and Singh R 2022). Nanotechnology 
has a very malleable and effective degradation potential, which is now 
exploited for removal of EDCs especially from water (Imparato et al., 
2022). ZnO, is a commonly used nanoparticle for the degradation of 
EDCs. In addition nanostructured catalytic membranes, nanosorbents, 
etc. are highly efficient for the removal of EDCs like BPA (Bisphenol A), 
Phenol, 2, 4-DCP, 4-CP (4-chlorophenol), and ReOH (resorcinol). 

Contemporary research heralds the advent of nanocatalysts. They 
have the ability to co-exist with other substances but require stricter 
conditions like high accuracy and sensitivity of the catalyst, optimum 
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initial pollutant concentration, pH values, and the dosage of photo-
catalysts (González-González RB et al. 2022). These unique features of 
good specificity, adsorption capacity, raised surface region to volume 
percentage, ability to enter and penetrate easily, and heightened reac-
tivity help to eliminate toxic materials more easily, and these features 
make them an ideal candidate for concentration of bioremediation ef-
forts. (Thangavelu L, Veeraragavan GR. 2022). 

8. Future perspectives 

Older conventional bioremediation techniques though cost-effective 
are slow, laborious, inefficient and protracted. Hence, novel techniques 
and approaches developed in biotechnology, must be effectively used in 
the bioremediation of EDCs like predictive molecular modeling, protein 
engineering, cloning and genome editing (CRISPR) (Singh et al., 2021a; 
Ali SS et al. 2021; Granja-Travez et al., 2020; Kumar et al., 2020). These 
newer methods will aid in detecting how biological systems respond to 
pollutants, and thereby pave safer and cleaner ways for novel biore-
mediation of EDCs. Furthermore, the advancement and technological 
feats we are encompassing need to be responsibly used for mitigation of 
EDCs in the environment. In the recent years, the role of computational 
biology or bioinformatics in simplifying predictive bioremediation is 
being largely studied. The in-silico approaches’ ability to predict the 
chemical property of the compounds, degradation pathways, prediction 
for novel xenobiotics etc. Will be game changing. The different 
biodegradation databases/tools/model systems developed like the 
PathPred, CATALOGIC, BNICE, enviPath, EPI, BIOWIN, MetaRouter, 
EAWAG-BBDD etc. Will aid researchers in choosing best approach to 
biodegratio; (Singh et al., 2021b; Ahmad et al., 2020; Bilal M et al., 
2020; Mishra B et al., 2021). Nevertheless, a multipronged approach 
safely choosing a combination of conventional, newer approaches need 
be tried in the field and their results be evaluated. Reconstruction of the 
known pathways and synthesis of novel pathways may be our way to a 
better future. Newer methods of toxicological analysis and predictions 
need to be availed prior to release of compounds in for regular use. The 
road ahead is clearly visible despite the bumps and turns. Primary 
studies comparing and contrasting the existing techniques and newer 
methodologies of bioremediation need be undertaken. The use of high 
through put systems, evolving omics including genomics, meta-
genomics, transcriptomics, metatranscriptomics, metabolomics, fluxo-
mics, proteomics, etc. and the large information databases need to be 
thoroughly evaluated for the purpose of finding a strategy suitable for 
degrading most EDCs. 

9. Conclusion 

A wide range of EDCs is being secreted and dumped into the envi-
ronment by various industrial manufacturing and processing units. The 
deleterious effects of these toxic products on health of fauna and flora 
has been disregarded and their remediation measures being down-
played, thereby remaining a challenge globally. For sustainable devel-
opment, one needs to evolve, integrate, and empower the existing 
conventional bioremediation strategies and adopt greener technologies 
(Singh et al., 2021a). Additionally, the changes in awareness and public 
policies, governmental restrictions and regulations are needed to in-
crease the comprehension of EDCs and assess their impact in the envi-
ronment, thereby; limiting their unnecessary usage and increasing 
search for safer alternatives. The recent fast paced evolution of omics 
technologies, computational biology, biosurfactants, biofilm forming 
microbes and genetically modified microbes holds great promise for the 
future of bioremediation of EDCs (González-González RB et al. 2022; 
Sandhya M et al., 2022; Ng YJ et al., 2022; Sharma P et al., 2022). 
Empowering clinical research and promoting interdisciplinary collabo-
rations of individuals belonging to dissimilar scientific backgrounds may 
lead on to development of novel and sustainable greener options as the 
ultimate bioremediation strategy. 
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