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A B S T R A C T   

Indiscriminate usage, disposal and recalcitrance of petroleum-based plastics have led to its accumulation leaving 
a negative impact on the environment. Bioplastics, particularly microbial bioplastics serve as an ecologically 
sustainable solution to nullify the negative impacts of plastics. Microbial production of biopolymers like Poly-
hydroxyalkanoates, Polyhydroxybutyrates and Polylactic acid using renewable feedstocks as well as industrial 
wastes have gained momentum in the recent years. The current study outlays types of bioplastics, their microbial 
sources and applications in various fields. Scientific evidence on bioplastics has suggested a unique range of 
applications such as industrial, agricultural and medical applications. Though diverse microorganisms such as 
Alcaligenes latus, Burkholderia sacchari, Micrococcus species, Lactobacillus pentosus, Bacillus sp., Pseudomonas sp., 
Klebsiella sp., Rhizobium sp., Enterobacter sp., Escherichia sp., Azototobacter sp., Protomonas sp., Cupriavidus sp., 
Halomonas sp., Saccharomyces sp., Kluyveromyces sp., and Ralstonia sp. are known to produce bioplastics, the 
industrial production of bioplastics is still challenging. Thus this paper also provides deep insights on the ad-
vancements made to maximise production of bioplastics using different approaches such as metabolic engi-
neering, rDNA technologies and multitude of cultivation strategies. Finally, the constraints to microbial 
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bioplastic production and the future directions of research are briefed. Hence the present review emphasizes on 
the importance of using bioplastics as a sustainable alternative to petroleum based plastic products to diminish 
environmental pollution.   

1. Introduction 

Petroleum-based plastics have conquered human life daily due to 
their versatile, inexpensive, lightweight and excellent thermal proper-
ties. These properties have made plastics more advantageous than 
metals, wood, paper, etc. According to the current statistics, about 34 
million tons of plastics have been produced in a year by humans, of 
which 7% are recycled, and the remaining 93% are dumped into the sea, 
oceans, and landfills, leading to its accumulation. As per reports, in 
2015, more than 300 million tons of plastic were used worldwide 
(Sushmitha et al., 2016). Excessive usage of plastics causes severe im-
pacts on the environment. The incineration of plastic liberates various 
toxic greenhouse gases, thereby contributing to global warming, climate 
change, and harmful effects on various species (Ford et al., 2022). 
Moreover, due to their high carbon footprint, petrochemical-based 
plastics are non-eco-friendly (Gadhave et al., 2018) and accumulate in 
various habitats. Plastics also incite various health issues in humans, 
especially the aftermaths of fluctuations in thyroid hormone levels 
(Darbre, 2020; Duan et al., 2021). Moreover, the synthesis of plastics 
also requires hazardous and carcinogenic chemical additives such as 
phthalate plasticizers and brominated flame retardants (Gopalakrishnan 
et al., 2020; Awasthi et al., 2021a). 

Other forms of plastics, such as microplastics and nanoplastics also 
cause harmful effects on living organisms. Plastics are polymers which 
are made up of hydrocarbon monomers and a long-time exposure of 
these polymers in the environment, whether in soil or water, causes 
many physical and chemical changes to plastics. Mostly they may un-
dergo depolymerization to form smaller fragments of macroplastics such 
as microplastics (<5 mm) and nanoplastics (<0.1 μm) (Yee et al., 2021). 
Apart from this, micro and nanoplastics are also synthesized for indus-
trial applications such as exfoliants, also used in cosmetics and drug 
delivery particles, etc (Karbalaei et al., 2018). Nano and microplastics 
will find their way to the food chain when they are released to the 
environment and thereby cause threat to animals as well as humans. 
These particles may interact with proteins, lipids, carbohydrates, ions, 
etc of the human body (Yee et al., 2021) and thus measures to reduce 
plastic consumption have occurred worldwide, further promoting the 
recycling of plastics (Justine et al., 2015). Microplastics critically affect 
health, reproduction and organ development in humans as well as ma-
rine organisms; hamper the microbial flora of soil and subsequent plant 
growth; thereby spreading its negative impacts to different levels of the 
ecosystem and inhabitant life forms (Bhatt et al., 2021). 

Microbes serve as double-headed swords in dealing with plastic 
pollution due to its ability to degrade plastic in natural environments as 
well as by forming a biosynthetic machinery of bioplastics as an ideal 
alternative to currently used petroleum derived plastics. The first plastic 
degradatory role of microbes is attributed to the presence of enzymes 
such as laccase, PeTase, esterase, lignin peroxidase, proteases, etc (Zhou 
et al., 2022). The diversity of these plastic remediating enzymes origi-
nated from diverse microbes in the form of bacteria and fungi, serve as 
effective tools to remediate petroleum-based plastics to nontoxic com-
pounds (Dhanraj et al., 2022). The second direction of microbial role in 
tackling existing plastic pollution is by providing us with an eco-friendly 
and biodegradable range of bioplastics, to thereby reduce the use of 
hydrocarbon derived plastics. Since the authors have previously dis-
cussed the microbial degradation of plastics through previous publica-
tions (Dhanraj et al., 2022; Francis et al., 2021; Zhou et al., 2022), the 
current article concentrates on the advancements and constraints faced 
in microbial production of bioplastics. 

Implementing novel techniques for manufacturing bioplastics that 

promote sustainability and reduce plastic waste has been dramatically 
recommended (Yadav et al., 2019). Bioplastics, unlike petroleum-based 
plastics, can be acquired using renewable sources and are considered 
novel materials of the 21st century of potential value (Chozhavendhan 
et al., 2020; Awasthi et al., 2021b). Since raw materials can absorb 
carbon dioxide throughout the growth process, bioplastic production 
would aid in reducing carbon emissions, further alleviating the econo-
my’s reliance on fossil fuels (Crippa et al., 2019; Kumar et al., 2021). As 
part of the technological progress of the bio-economy, renewable 
resource derived biodegradable plastics in a variety of forms such as 
ground film, handbags and disposable packaging are promoted 
(Schoenmakere et al., 2018; Duan et al., 2020; Reshmy et al., 2021). 

Bioplastics, also nicknamed Green-plastics, vary in composition, 
existing as either starch or cellulose Polylactic acid (PLA) derivatives, 
and adopt diverse biodegradative pathways and biodegradation rates 
(Bassi et al., 2021). Bioplastics or Green plastics are named either for 
their formation from renewable resources or their ultimate degradabil-
ity to carbon dioxide and water. Depending on the type of plastic, they 
can be decomposed by microorganisms to achieve alternative life cycle 
management, such as household composting, industrial composting, and 
anaerobic digestion, further encouraging the development of a circular 
economy (Narancic et al., 2018; Awasthi et al., 2020a). The aerobic 
digestion of plastics to carbon dioxide is preferred to its anaerobic 
digestion to methane (an approximately 20 times more potent green-
house gas) (Quecholac-Piña et al., 2020). Moreover, it is noted that not 
all bioplastics satisfy both of the properties mentioned above, as some 
may be biobased yet not degradable to their lowest form, as in the case of 
bioderived polyethylene (Bio-PE) and its derivatives. Thus, the concept 
of American Society for testing and Materials (ASTM) D6400-21, 
including the 90% aerobically digestible (in 180 days) completely 
recyclable bioderived bioplastic specifications, has been introduced in 
developed countries like the United States to subcategorize bioplastics to 
biodegradable plastics (https://www.astm.org/d6400-21.html). 

Recently, plastic manufacturers have shown a keen interest in pro-
ducing bioplastics from renewable resources. This is because they can 
use the same processing unit, further reducing the overall investment in 
production infrastructure. Another striking fact is that the material 
properties of bioplastics are similar to the traditional polyethylene 
terephthalate (PET) and polyethylene (PE) resins (Amulya et al., 2015; 
Awasthi et al., 2020b). Brazil has successfully produced bio-based PE 
from sugarcane and PET using plant materials for soft drink bottle 
production (bioPET) (Bartolo et al., 2021). Concurrently, since 2017, 
industrial manufacturing of bio-remediable polybutylene succinate 
(PBS) using corn and sugarcane (BioPBS) has been explored (Sham-
suddin et al., 2017), thus highlighting the sustainability and trends in 
biodegradable plastic alternatives. 

Even though bioplastics are currently a tiny sector, accounting for 
about 1% of the global plastic manufacturing market, their production is 
rising. The global market for biodegradable plastics is anticipated to 
grow to $6.73 billion by 2025, from $3.02 billion in 2018. A primary 
hike in such rapid expansion directly reflects the acceptability and 
increased use of biodegradable alternatives in developing nations like 
Brazil, India, and China (Narancic et al., 2020). Although starch blends 
account for most biodegradable plastic manufacturing, bioplastics such 
as Polyhydroxyalkanoates (PHA) and Polylactic acid (PLA) residues 
form the leading variety of bioplastics. Their market shares are 1.2% and 
13.9% (weight percentage) respectively, producing 2.11 million tons 
bioplastics. Global PHA production is anticipated to rise from 25,320 
tonnes in 2019 to 1.59,700 tonnes in 2024, a 6.3-fold increase, while 
PLA production is expected to grow from 2.93,290 tonnes in 2019 to 3, 
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17,000 tonnes in 2024 (Narancic et al., 2020). 
According to the current statistical data from the European Bio-

plastics Company, global bioplastic production was around 2 million 
tonnes in 2018, and global plastic production was about 360 million 
tons. In the next five years, the worldwide market for bioplastics is 
anticipated to increase by 40% (Bassi et al., 2021). There are already 
various examples of bioplastics in the market manufactured by multiple 
companies in Asia, Europe, and the United States. BASF (Germany), 
Corbion NV (Netherlands), Nature Works LLC (United States), Nova-
mont (Italy), CJ Cheil Jedang (South Korea), and Tianjin Guoyun 
(China) are some of the leading producers. Nylon-11 made from castor 
oil and Cellophane TM made from reformed cellulose by Futamura 
Chemical Company (UK) were the two historically successful examples. 
Polylactic acid resins in different brands such as Luminy® series from 
Total Corbion and Ingeo TM manufactured by Nature Works LLC are the 
other bioplastic products available. PLA, Polycaprolactone (PCL), and 
copolymers are among the bioabsorbable polymers sold by Corbion 
under the grade PURASORB®. Danimer Scientific manufactures bio-
plastics based on PHA named NodaxTM, while BASF produces a variety 
of compostable polymers such as ecovio® and ecoflex® (Bartolo et al., 
2021; Qin et al., 2021a). 

The real-time scenario after Covid-19 is that it has started attacking 
the world as the usage of single-use plastics has been increased. It is our 
obligation to use protective equipment such as masks, gloves, PPE kit 
etc, for controlling the spread of virus and consequently, the accumu-
lation of these single-use plastics has also increased. According to pre-
dictions, there is a chance of a two fold increase in plastic debris (Nano 
and microplastics) by 2030. So, by considering the implications of 
petroleum-based plastics, there is an urgent need to shift towards more 
sustainable solutions such as increased production of bioplastics (Silva 
et al., 2021). 

This review covers all aspects from the basic to advanced methods of 
bioplastic production, types of bioplastics, different sources of bio-
plastics, types of microorganisms producing bioplastics, molecular and 
biochemical aspects of bioplastic synthesis, application of genetic en-
gineering and metabolic engineering for enhanced bioplastic production 
and various applications of bioplastics. Hence, the present review aims 
to provide a detailed account of the advancements in microbial bio-
plastic synthesis. Signs of progress in the technologies used during the 
commercialization of microbial bioplastics concerning their metabolic 
pathways and novel applications are being discussed in the following 
sections. Also, this review shows how significantly bioplastic production 
can contribute to circular bioeconomy. 

2. Types of bioplastics 

Bioplastics are either bio-based or biodegradable (Yadav et al., 
2019)."Bio-based” refers to a polymer entirely or partially 
biomass-derived polymer, such as organic waste or a renewable bio-
logical source. “Biodegradable” denotes a substance that can be 
metabolized microbially to carbon dioxide, water, and biomass. Based 
on this criterion, bioplastics are divided into three types: bio-based and 
biodegradable polymers (BBBP), solely bio-based polymers (SBBP) and 
biodegradable polymers (BP) only. PHAs, PLA, bio-PBS and polymers 
based on chitosan, starch, lignin, and cellulose are bioplastics with both 
biologically derived and biodegradable (Nampoothiri et al., 2010). Ex-
amples of bio-based bioplastics include bio-based polyethylene (bio-PE), 
polypropylene (bio-PP), polyamides (bio-PA), and polyethylene tere-
phthalate (bio-PET) (Siracusa and Blanco, 2020). Lastly, PBS, polyvinyl 
alcohol (PVA) and polypropylene (PP) derived from fossil resources are 
categorized as BP varieties (Ferreira et al., 2019). 

2.1. Polyhydroxyalkanoates (PHAs) 

They represent a group of biopolyesters which is considered biode-
gradable and an optically active polymer, such as polyhydroxybutyrate 

(PHB), polyhroxyvalerate (PHV) and derived polymers viz, Poly(3- 
hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) which accounts for a 
meagre of total bioplastic manufacture (Narancic et al., 2020; Qin et al., 
2021b). Bacteria synthesize PHAs as a stress response when they lack 
inorganic nutrients such as oxygen, nitrogen or phosphates, while car-
bon is in excess amounts (Ray and Kalia, 2017). Bacterial lysis and 
subsequent downstream processing obtain such microbially derived 
intracellular fermentation products. According to Khatami et al. (2021), 
PHAs find various medical applications with their biocompatibility, 
biologically safe nature, biodegradability and ability to exhibit ther-
moplastic characteristics similar to petrochemical plastics. Due to their 
variant physical characteristics comprising diverse monomer composi-
tions, they provide a wide range of applications. PHA has a diameter 
ranging from 0.2 to 0.5 μm either as5 carbon short chains or as medium 
chains to 14 carbons (Li et al., 2007a, b; Raza et al., 2018; Qin et al., 
2021c). The physical properties of PHA depend primarily on the poly-
mer’s monomer composition, organism, growth conditions and polymer 
extraction techniques. Ideally, short-chained PHA has characteristics 
similar to traditional polymers like polypropylene and more extended 
PHA exhibit more elastic properties (Gopi et al., 2018). 

Regardless of their differences in gram staining properties, Bacteria 
are equally capable of producing bioplastics. PHA production in bacteria 
can occur in two situations, during nutrient deficiency (deprivation of 
essential nutrients like nitrogen and phosphorus) and their growth phase 
(Khatami et al., 2021). Thus, it becomes critical to evaluate the log and 
lag phase of each potent PHA producer before optimization studies are 

Table 1 
An overview on various microorganisms producing different types of bioplastics.  

Sl 
No. 

Microorganisms used Bioplastics 
Produced 

Reference 

1. Pseudomonas spp. PHA Davis et al. (2013) 
2. Burkholderia sacchari PHB Cesario et al. (2014) 
3. Burkholderia cepacia PHB Pan et al. (2012) 
4. Bacillus firmus PHB Sindhu et al. (2013) 
5. Comomonas spp. PHB Sindhu et al. (2014) 
6. Lactobacillus pentosus PLA Wischral et al. (2019) 
7. Recombinant Lactobacillus 

plantarum 
PLA Zhang et al. (2016) 

8. Pleurotus ostreatus Bio-ethylene Moreno-Bayona et al. 
(2019) 

9. Alcaligenes latus PHA Shettar et al. (2016) 
10. Bacillus megaterium PHA Kumar et al. (2015) 
11. Bacillus cereus PHA Singh et al. (2009) 
12. Bacillus megaterium R11 

Serratia ureilytic 
PHA Tsang et al. (2015) 

13. Pseudomonas aeruginosa PHA Israni, 2016 
14. Comamonas testosterone PHA Chen and Tan, 2014 
15. Pseudomonas guezennei PHA  
16. Enterococcus sp. PHA Chozhavendhan et al. 

(2020) 
17. Brevundimonas sp. PHA  
18. Bacillus subtilis PHA Chozhavendhan et al. 

(2020) 
19. Micrococcus sp. PHB  
20. Rhizobium leguminosarum PHB Patel and Parsania, 

2018 
21. Azotobacter beijerinckii PHB Albuquerque et al. 

(2011) 
22. Cupriavidus necator PHA     

Soto et al. (2019) 
23. Protomonas extorquens, PHA Portugal-Nunes et al. 

(2017) 
24. P. oleovorans PHA  
25. Saccharomyces cerevisiae PHB Moreno-Bayona et al. 

(2019) 
26. S. diastaticus PHB  
27. Candida krusei PHB  
28. C. tropicalis PHB Simó-Cabrera et al. 

(2021) 
29. Kloeckera apiculata PHB  
30. Kluyveromyces africans PHB   
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carried. Table 1 enlists some examples of PHA producing microbes. The 
predominantly used PHA polymer viz. poly-3-hydroxybutyrate (PHB), is 
noted for its relative brittleness and high crystallinity to polypropylene. 
However, blending PHA monomers to produce copolymers has become 
common to adapt the polymer’s thermal and mechanical characteristics 
to the required qualities by altering their composition (Ray and Kalia, 
2017). PHBV with less fragility, lower melting temperature, and crys-
tallinity percentage add to its suitability as a mould (Visakh, 2014). 

Production of bioplastics is one of the circular bioeconomy ap-
proaches which can be simply defined as economic development using 
biological resources. In the present scenario where the after effect of 
development is environmental pollution, a circular bioeconomy 
approach with enhanced production of bioplastics is very important. 
Efficient utilization of bio wastes for bioplastic production is one of 
prime most technology in circular bioeconomy which needs to be 
developing more (Talan et al., 2022). 

Different kinds of wastes were reported to act as excellent substrates 
for PHA synthesis. The main feedstocks are lignin-based wastes (Kumar 
et al., 2017), wastewater sludge (Kumar et al., 2018), waste water from 
paper, pulp and cardboard industries (Grazia et al., 2017), glycerol 
(Morya et al., 2018) and carbon dioxide (Kumar et al., 2016). Waste 
water treatment sludge can be considered as one of the potential feed-
stocks as they contain consortia of various microorganisms. These mi-
crobes will produce PHA in the presence of excess carbon source (Kumar 
et al., 2018). Glycerol as a feedstock gives a maximum yield of 85.19% of 
cell dry weight (CDW) PHA by using Bacillus sp. under optimized con-
ditions (Morya et al., 2018). Lignocellulosic wastes generated from 
plants, paper and pulp industries, etc can be used by bacteria such as 
Pseudomonas sp. effectively and synthesis PHA (Kumar et al., 2020). 
Under optimized conditions oleaginous bacteria Serratia sp. showed a 
two-fold increased PHA production using CO2 (Kumar et al., 2016). 

2.2. Polylactic acid (PLA) 

These bioplastics are biodegradable and biobased polyester synthe-
sized via lactic acid condensation polymerization, lactide chain devel-
opment, or ring-opening. In 2019, it accounted for 13.9 percent of 
worldwide bioplastic output (Simangunsong et al., 2019). Microbial 
fermentation produces PLA monomers of L or D isomers, then poly-
merized chemically to obtain PLA. The content of enantiomer content 
contributes to the physical properties of PLA regardless of its occurrence 
as homopolymers or heteropolymers. Homopolymers of PLA containing 
polyesters of either optically pure L or D lactic acid monomers will be 
semicrystalline, whereas PLA heteropolymers such as DL-lactic acid are 
amorphous (El-Hadi, 2018; Qu et al., 2021). 

Corn is the best source of high-purity lactic acid. When used as 
starting material, plants and other woody biomass can achieve lower 
manufacturing costs. Increasing the concentration of raw materials can 
reduce production costs, but this indirectly leads to increased fermen-
tation and saccharification costs. Ultrafiltration can be used to separate 
the lactate produced during fermentation. Lastly, electrodialysis can 
transform lactate into lactic acid. Since direct lactate condensation can 
only produce PLA with poor mechanical characteristics, polymerization 
of the intermediate dilactide is the most common method used (Brodin 
et al., 2017; Jain et al., 2022). In the case of microbes, large scale pro-
duction of PLA is preferred by homofermentative methods because it 
provides a higher yield of lactic acid with fewer by-products. This 
method uses Lactobacillus sp. such as Lactobacillus amylophilus, L. del-
brueckii, L. leichmannii, and L. bulgaricus (Chozhavendhan et al., 2020). 

PLA is a biodegradable thermoplastic that may be moulded into 
various bio-based goods. It has been proven that PLA can be used for 
packaging applications reinforced with nanocellulose fibrils. Micro-
cellulose and nanocellulose are suitable strengthening materials for PLA 
biocomposites (Jayakumar et al., 2021). PLA is beneficial in various 
aspects, such as compatibility with various fibres, excellent mechanical 
strength, low processing temperatures and biocompatibility compared 

to traditional thermoplastics. PLA is applicable in several industries, 
such as packaging, geotextiles, 3D printing, non-woven binder fibre, 
prosthetic devices, biomedical absorbable sutures, bio sorbents etc. 
Various sectors have commercialized PLA manufacture and other 
related biocomposites (Achaby et al., 2016; Malladi et al., 2018). 

2.3. Polyurethane (PU) 

Polyurethane is a polymer containing urethane groups in its chemi-
cal structure and are generally produced by reacting polyols containing 
two or more hydroxyl groups with isocyanates possessing two or more 
isocyanate groups. Because of their toxicity, all forms of isocyanate 
cannot be employed in industry for PU production. Also, while various 
polyols are available, the resources needed to synthesize them are 
largely petroleum-based, posing environmental concerns (Pfister et al., 
2011). As a result, eco-friendly PU synthesis from renewable resources 
has attracted much interest from researchers. Innovative methods like 
microbial conversion of renewable feedstock to the precursor compound 
for producing PU have been developed. Pseudomonas aeruginosa was 
used to convert olive oil to dihydroxy fatty acids, and then those dihy-
droxy fatty acids were reacted with hexamethylene diisocyanate (HMDI) 
to form PU (Tran et al., 2018). Lignin can be an inexpensive source for 
manufacturing polyurethane (PU). Based on the lignin content and its 
nature, the mechanical properties of PU can be analyzed. Organosolv 
lignin (15–25 W %) produces tough PUs in its natural state, but greater 
lignin concentration causes the PUs to become brittle and hard. To 
optimize the mechanical characteristics of PU, flexible aliphatic polyols 
must be combined with rigid lignin polyols (Kurańska et al., 2013). 
Liquifying lignin polyols is another alternative to formulate a more 
flexible PU. Flexible polyols such as polyethylene glycol and glycerol are 
mixed with low molecular weight lignin fragments through enzymatic 
hydrolysis and other mechanical treatments, during which some 
self-polymerization step occurs. PU is utilized in various products, 
including electronic and automotive goods bedding, construction, 
furniture binders and foams and coatings. Lignin may also be used to 
make phenol-formaldehyde resins, which can quickly form thermoset 
polymers. Hence, lignin can be utilized as a bio-based alternative to 
produce bioplastics (Kurańska et al., 2013; Hoeng et al., 2016; Sarsaiya 
et al., 2019). 

3. Organisms producing bioplastics 

3.1. Microbes producing bioplastics 

Extensive research on microbial bioplastics has revealed that diverse 
microorganisms produce and store PHAs/PHBs as sources of carbon and 
ATP. The type and molecular masses of the polymers produced varied 
with different microbes, carbon sources, and growth parameters 
(Albuquerque et al., 2011). Several bacterial strains such as Bacillus, 
Pseudomonas, Citrobacter, Enterobacter, Escherichia and Klebsiella are 
some of the most well-known PHA/PHB producing bacteria. In addition, 
the production of PHB is also evident in microbial members involved in 
the nitrogen cycle, for example, Rhizobium leguminosarum, R. hedysarum, 
R. galegae, A. macrocytogens, Azotobacter beijerinckii, and A. vinelandii, 
undermining that PHB also influences their growth (Bhatia et al., 2018; 
Patel and Parsania, 2018; Moreno-Bayona et al., 2019; Chozhavendhan 
et al., 2020). 

Bacteria are classified into two types based on the culture conditions 
that promote PHA accumulation: (1) bacteria that require an abundance 
of carbon and limit critical nutrients (such as oxygen and nitrogen) for 
many PHA syntheses. Examples include Protomonas extorquens, 
P. oleovorans, and Cupriavidus necator. (2) Bacteria that do not require 
nutrient restrictions can produce PHA during the log phase, e.g, Azoto-
bacter vinelandii and Alcaligenes latus (Albuquerque et al., 2011). The 
cultivation condition of PHA biosynthesis is a necessary prerequisite for 
the large-scale production of PHA. Furthermore, it was shown that 
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methylotrophic bacteria generate PHB, though in low quantities (Suzuki 
et al., 1986). Additionally, another category of PHA producers from 
bacterial domains requiring moderate salt concentrations belongs to the 
Halomonadaceae family; for instance, Halomonas sp. synthesizes small 
chain length (scl)-PHA. Lower NaCl (3–15%) is a prerequisite for the 
optimal growth of most Halomonas species. Kawata and Aiba (2010) 
have reported that, Halomonassp. KM-1 could produce PHB using glyc-
erol as the sole carbon source. Furthermore, it has been reported that 
cyanobacteria with PHA synthase enzymes accumulate PHA by utilizing 
CO2 and sunlight. Low molecular weights PHB are also reported in yeast 
and other eukaryotic bacteria which use polyphosphate complexes in 
membrane transport. These include Saccharomyces cerevisiae, Candida 
krusei, S. diastaticus, Kloeckera apiculata, C. tropicalis, Rhodotorula gluti-
nis, Kluyveromyces Africans, K. lactis and Ralstonia eutropha (Portu-
gal-Nunes et al., 2017; Soto et al., 2019). Also, recently it was reported 
that Bacillus sp. can be used for the fermentation and bioplastic pro-
duction from medical plant waste and waste frying oil (Mahari et al., 
2022). Licciardello et al. (2019) reported that Pseudomoas corrugate, 
Pseudomonas mediterranea can produce medium chain length PHA. 
Cupriavidus necator can synthesize PHA by using volatile fatty acids 
(Al-Battashi et al. 2020). An overview of various microorganisms pro-
ducing different types of bioplastics is summarized in Table 1. 

3.2. Algal production of bioplastics 

Production of bioplastics is not only confined to microbes, algae can 
also be used for the production of bioplastics. Starch, PHA, Cellulose, 
PLA, PVC, PE and some protein-based polymers are currently reported to 
be derived from algal biomass. Algal bioplastic production has some 
advantages such as alleviating greenhouse effect by absorbing carbon 
dioxide, enhancement of plastic quality as well as ability to be grown in 
large quantity in less place (Zhang et al., 2019a, b; Shi et al., 2012; 
Beckstrom et al., 2020). Moreover, the use of algae for bioplastic pro-
duction nullifies the concern of using human food source or waste as 
fermentation media, when the resources to meet food demands are 
meagre. Bioplastic production of algae can be done by using algal 
biomass directly, blending algae with other materials, intermediate 
biorefinery processing and application of genetic engineering for 
improved bioplastic production (Rahman and Miller, 2017). Cholrella sp. 
(Otsuki et al., 2004), Ulva armoricana (Chiellini et al., 2008), Spirulina 
sp. (Zeller et al., 2013), Laminaria japonica, Enteromorpha crinite (Jang 
et al., 2013) etc, are some of the reported algal species used for bio-
plastic production. 

The bioplastic synthesis pathway, especially of PHA, is well docu-
mented in cyanobacteria. Adequate amount of carbon source but 
insufficient nitrogen and phosphorous favours the biosynthesis of PHA 
and its accumulation in the cells. Acetyl-CoA produced during the 
normal biochemical reaction in the cells under appropriate condition is 
used to form PHA. Biosynthesis of PHA involves three enzyme involved 
steps (i) condensation of acetyl-CoA to form acetoacetyl-CoA by 
β-ketothiolase (ii) reduction of acetoacetyl-CoA to hydroxybutyryl-CoA 
by acetoacetyl-CoA reductase (iii) esterification of hydroxybutyryl- 
CoA to PHA by PHA synthase (Mal et al., 2022). 

Various biopolymers derived from algae are the best candidates for 
bioplastic production. The highlight of using microalgae for bioplastic 
production is its cost-effectiveness. Microbial production of bioplastics 
needs large quantities of substrates when compared to production using 
microalgae because algae are auto-tropic. They use CO2 and light for 
their food, thereby reducing the cost of providing substrates. Moreover, 
using algae for bioplastic production shows more inclination toward a 
circular bio-economy as they have features such as low cost, low CO2 
generation and low greenhouse gas emission etc (Dang et al., 2022). 

Cyanobacteria such as Synechococcus sp. (Nishioka et al., 2001), 
Synechocystis sp. (Panda and Mallick, 2007), and Muscorum sp. 
(Sharma and Mallick, 2005) can produce 30–80% of PHB. Chlorella sp. 
are the best candidates for making starch-based bioplastics and biobased 

polymer blends such as blends with polyvinyl alcohol, PE and glycerol. 
Spirulina sp. is also an ideal candidate for biobased blends and bioplastic 
production (Onen Cinar et al., 2020). Another microalgal species known 
to produce PHA is Calothrix scytonemicola (Johnsson and Steuer, 2018). 
Bioplastic production is also exhibited by some macroalgal species. 
Macroalgae can also be employed as a feedstock for the production of 
bioplastics. Also, some of the derivatives from the macroalgae can be 
exploited for the production of bioplastics. Mainly carrageenan, which 
can be obtained from marine macroalgae such as Kappaphycus sp. and 
alginates that can be obtained from Macrocystis sp. can be used. Those 
derivatives can be used to make blends with glycerol and polyvinyl 
alcohol to manufacture biodegradable plastic films (Dang et al., 2022). 

4. Molecular basis of bioplastic production 

In the past two decades, some scientific discoveries focused on the 
biosynthesis of biopolymers have proved that microorganisms capable 
of synthesizing bioplastics undergo different metabolic pathways ac-
cording to the type of the medium components (Fig. 1) (Simó-Cabrera 
et al., 2021). However, acetyl-CoA is the initial metabolite described 
among the three notable routes followed by microorganisms. When 
carbohydrate is the primary source in the culture media, it is metabo-
lized to pyruvate, ultimately used to synthesize PHAs (González García 
et al., 2013). In comparison with plants [<10% (w/w)], bacteria accu-
mulate PHAs up to 90% (w/w) of the microbial dry weight (Verlinden 
et al., 2007). 

Cytosol based PHA synthase initiates PHA accumulation using acetyl 
CoA monomeric units. The PHA biosynthesis pathway comprises three 
distinct enzymatic reactions. In the first step, β-ketoacylCoA thiolase 
(phbA) catalyzes the condensation of two acetyl-coenzyme A (acetyl- 
CoA) molecules into acetoacetyl-CoA. Secondly, a reduction of the latter 
product to (R)-3-hydroxybutyryl-CoA occurs by acetoacetyl-CoA dehy-
drogenase/reductase (phbB). Finally, the polymerization of monomers 
to PHB is catalyzed by the polymerase (phbC) (Shabina et al., 2015). 
Microbes can initiate PHB synthesis from sugars and fatty acids 
following the beta-oxidation pathway and the de novo fatty acid 
biosynthetic pathway, as noted in Fig. 1. The various intermediates of 
fatty acid metabolism are eventually converted to (R)-3-hydrox-
yacyl-CoA, and corresponding (R)-3- hydroxy fatty acids are produced, 
which are further polymerized to form PHA. Once the oxidation of 
carbon is done, the intermediates in de novo fatty acid biosynthesis will 
divert to PHA biosynthesis, which is catalyzed by transacylase (PhaG). 
The oxidation of enoyl-CoAto (R)-3-hydroxyacyl-CoA is catalyzed by 
enoyl-CoA hydratase (PhaJ) and further to PHA by PHA synthase en-
zymes (PhaC) (Yadav et al., 2019).PHA/PHB polymers accumulate pri-
marily in the form of granules within the bacteria due to their 
hydrophobicity. These accumulated granules comprise polymerized 
PHAs moieties associated with phospholipids and bacterial cells called 
phasins. Such molecular entities make PHAs a more stable crystalline 
polymer that prevents them from interacting with water within the 
bacterial cells. The presence of phasins on the hydrophobic core aids in 
the identification of the PHA granule’s number and size (Pötter et al., 
2002). 

5. Advancements in the methodologies used for enhanced 
bioplastic production 

Bioplastics are produced on a large scale by various processes, 
depending on their advantages and disadvantages, followed by a sub-
sequent selection of the best ones. To enhance its productivity and bring 
down its production costs, international interests in developing novel 
methods for bioplastic production are inflating. In this context, the 
shortcomings of the old ways are processed and modernized so that the 
advanced techniques become more successful. Fig. 2 outlines the main 
strategies adopted to improve bioplastic production. 
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5.1. Elevated density fed-batch cultivation strategy 

The development of enhanced fermentation technology accelerating 
scaling up can serve microorganisms as an ideal source for synthesizing 
recognized and novel microbial products (Varghese et al., 2021). To 
achieve higher concentrations of the product in the medium, 
high-density cultivation is developed by growing cells in elevated 

densities. This strategy is considered an effective tool in modern bio-
processing (Subramaniam et al., 2018). The fermentation process 
involved in PHA production is generally challenging and is controlled 
through two or more fermentation stages to meet a higher polymer 
yield. The use of extremophilic microorganisms is advantageous, and 
they have a considerable effect against contamination; hence fewer 
sterility precautions have to be taken. Various factors such as bacterial 
biomass (74–92%), high monomer content (92–99%), feeding modes 
(pulse, constant, mixed) as well as culturing methods such as fed-batch 
greatly influence the extent of PHA production (Huong et al., 2017). 
Norhafini et al. (2019) have proposed that a minimum level of nitrogen 
supplementation should be maintained to aid microbial growth and 
subsequent PHA accumulation. Moreover, it’s noted that fed-batch 
fermentation offers excellent control to prevent complete loss of me-
dium carbon and nitrogen and dramatically affects the polymer’s 
properties and productivity, making it highly recommended for PHA 
production. 

5.2. Using activated sludge for the enrichment and PHAs production 

The process of wastewater treatment results in the formation of 
activated sludge. Since the usage of activated sludge does not demand 
sterilization conditions that further reduce the PHA production costs, it 
is considered an excellent replacement for pure bacterial strains (Val-
entino et al., 2015). Several studies have succeeded in activating sludge 
to enrich PHAs on a laboratory scale under artificial conditions. These 
investigations focused on upgrading the PHA production capacity of 
activated sludge. 

Several research investigations have been carried out on the opti-
mization studies for activated sludge, such as pH, oxygen concentration, 
addition or reduction of nutrients and organic substrates, solid retention 

Fig. 1. The metabolic pathways responsible for PHA production (PhaA: b-ketothiolase; PhaB: acetoacetyl coenzyme A(CoA) reductase; PhaC: PHA synthase; FabG: 3- 
ketoacyl acyl carrier protein (ACP) reductase; PhaG: acyl-ACP-CoA transacylase; PhaJ: enoyl-C ketoacyl acyl carrier protein (ACP) reductase; PhaG: acyl-ACP-CoA 
transacylase; PhaJ: enoyl-C) (Adapted from Khatami et al., 2021). 

Fig. 2. Strategies for enhanced bioplastic production.  
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time, feeding methods, etc. (Chen et al., 2013; Bassi et al., 2021). The 
extracellular polymeric substance (EPS) of activated sludge maintains its 
chemical properties and microbial flocculation and plays a crucial role 
in PHA production. This works in two perspectives: (1) in the early 
stages, accumulated PHAs oppose EPS accumulations, (2) at the final 
reaction phase, when carbon sources are deprived, PHA accumulation 
uses energy for EPS. EPS production and consumed sludge properties 
fluctuate wildly during these reaction stages, and in the subsequent 
course, most PHAs are synthesized in the microbial cells. Furthermore, 
the structure of sludge flocs influences solid-liquid separation and the 
reaction rate. This reverses the efficiency and cost of PHA production 
(Cui et al., 2017). 

Physicochemical properties of the sludge, such as biomass concen-
tration, affect PHA accumulation (Sakai et al., 2015). Conversely, it is 
necessary to examine other parameters such as pH, temperature and 
aeration during PHA production to develop successful methodologies. Li 
et al. (2019) operated batch reactors that used mixed carbons for PHB 
production and discovered that although sludge floc size had a negative 
impact on PHAs accumulation, Mixed Liquor Suspended Solids 
(MLSS)/polysaccharides had a positive impact on the formation of 
PHAs. Irrespective of the fact that sludge is converted into useful bio-
plastic, lack of cost effectiveness, inconsistency in sludge composition 
and need for constant optimization is a major challenge in us of acti-
vated sludge for bioplastic production at industrial levels. 

5.3. Using photoheterotrophic microbes 

Photoheterotrophic microbes utilize different metabolic pathways in 
response to various substrates, predominantly using acetate and buty-
rate to produce PHA in pure or microbial consortiums (Reddy et al., 
2014). Reports have suggested that microbial consortia produced PHA 
yields of most total suspended solids (TSS) (Bhalerao et al., 2020) 
comparatively higher than pure culture production. Tables 2 and 3 
illustrate a comparison study of microbial consortia and pure cultures 
used for optimum production of bioplastics. The composition of the 
substrate leads to several quantities of monomers in poly-
hydroxybutyrate (PHB) and polyhydroxyvalerate (PHV) copolymers 
(Villano et al., 2010). The properties of these copolymers can be sub-
sequently changed to a great extent as a unit of a 3-hydroxyvalerate 
(3HV) monomer. There are distinct strategies to reduce costs by opti-
mizing the fermentation conditions and increasing production efficiency 

(Dietrich et al., 2017). Albuquerque et al. (2013) noted that Paracoccus 
sp. from a microbial consortium utilized a higher proportion of butyrate 
and propionate than valerate and acetate, while Thauera and Azoarcus 
preferred butyrate and acetate, respectively, contributing to a sustained 
high PHA production.Moreover, it was observed that during PHA pro-
duction, mixed cultures of photosynthetic bacteria utilized acetate as a 
co-substrate for the assimilation of butyrate and propionate. However, 
another study (Liu et al., 2011) discovered higher concentrations of PHB 
accumulating microorganisms in activated sludge accustomed to a sin-
gle carbon source. So, to generalize, the microbial carbon dependence 
on bioplastic production is not acceptable. Photoheterotrophic bacteria 
such as Pseudomonas, Rhodopseudomonas and Clostridium could use ac-
etate and butyrate separately and in a mixture for PHA production 
(Guerra-Blanco et al., 2018), though butyrate consumption was lesser 
than acetate. However, the growth rates and the substrate consumption 
of acetate in a mixture were almost the same. 

5.4. Using continuous stirred-tank reactors (CSTRs) 

Since continuous microbial enrichment cultures obliterate sterile 
fermentation conditions, usage of organic waste as a substrate is highly 
recommended (Chen, 2009). For example, fermented waste streams 
obtained from the food and paper industries could be used as substrates 
for microbial enrichment cultures producing PHAs that would remark-
ably reduce their costs and further permit a wide array of applications 
(Albuquerque et al., 2011). The PHA production process could be 
modified by combining the feast-famine conditions in two continuous 
stirred tank reactors (CSTRs) with partial biomass recycling (Marang 
et al., 2015). This 2-stage system has a constant feed power supply with 
spatially separate feast and famine phases. However, since the first 
reactor receives the oversupply of substrates under the feast conditions, 
only trace amounts will end up in the (second) famine reactor. There-
fore, these conditions can cause selection pressure on PHA accumulating 
bacteria by influencing their affinity towards the substrate and bacte-
ria’s maximal substrate uptake rate (Amulya et al., 2015). 

Previous experimental studies by Bengtsson et al. (2008) and Albu-
querque et al. (2011), who used a 2-stage CSTR system to enrich 
PHA-producing bacteria, did not respond to the influence of the chosen 
reactor configuration on the microbial competition. Marang et al. (2018) 
have demonstrated the effect of continuous acetate feeding while 
enriching PHA producing bacteria in 2-SBRs. In addition to enriched 

Table 2 
Productivity of bioplastics by pure cultures at the laboratory scale.  

Sl. 
No. 

Microorganisms Carbon source Type of 
Bioplastics 

Content 
(%) 

References 

1 Bacillus megaterium UMTKB-1 Medical plastic waste + Waste frying oil (800 W) P(3HB) 1.54 ±
0.13 

Mahari et al. (2022) 

2 B. gladioli 2S4R1 Glucose + Xylose + Arabinose PHB 52.06 Naitam et al. (2022) 
3 B. cereus LB7 Glucose + Xylose + Arabinose PHB 50.71 Naitam et al. (2022) 
4 L. mesenteroides Cheese whey PHA 36 Bosco et al. (2021) 
5 Cupriavidus necator Volatile fatty acids from paper wastes PHA 60.71 Al Battashi et al. (2021) 
6 Cupriavidus necator Cheese whey 3HB 71 Domingos et al. (2018)    

3HV   
7 Cupriavidus necator Waste rapeseed oil 3HB 76 Obruca et al. (2010)    

3HV   
8 Bacillus megaterium Sucrose 3HB 62 Faccin et al. (2013) 
9 Pandoraea sp. MA03 Crude glycerol 3HB 49 de Paula et al. (2017) 
10 Pseudomonas aeruginosa 

ATCC      
27,853 Long odd chain fatty acids (heptadecanoic acid, nonadecanoic acid, 

heneicosanoic acid) 
3HB 13.4 Impallomeni et al. (2018)    

3HV   
11 Pseudomonas putida Glucose + glycerol + octanoate HHx, HO, HD 57 Fontaine et al. (2017) 
12 Recombinant Pseudomonas 

putida 
Waste vegetable oil HHx, HO, HD 38.3 ± 3.1 Borrero-de Acuña et al. 

(2019) 
13 Burkholderia sacchari Waste paper PHB 44.2 Al-Battashi et al. (2019) 
14 Burkholderia sacchari Glucose + different co-substrates PHB 2.7–73.7 Mendonça et al. (2014) 
15 Bacillus sp. ISTVK1 Pure glycerol PHV 85.19 Morya et al. (2018)  
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Zoogloea sp., acetate was continuously added to the first reactor; how-
ever, enrichment cultures on an SBR dominated by Plasticicumulans 
acidivorans gave a five-fold yield. 

5.5. Metabolic engineering 

Strain improvement and metabolic engineering procedures have 
been widely applied with the primary objective of making bioplastic 
production more efficient and competitive. These advanced technolo-
gies have allowed PHA producers to improve their cultivation parame-
ters. Furthermore, metabolic engineering has also been used to refine 
the quality of PHAs by modifying their chemical properties like mono-
mer composition, chain length and molecular weight (Agnew and 
Pfleger, 2013; Wainaina et al., 2020a; Liu et al., 2021a). 

5.5.1. Expanding substrate utilization 
According to Ren et al. (2018), metabolic engineering can be utilized 

to accelerate the growth of a PHA producer. Jarmander et al. (2015) 
depicted that during the production of a PHB monomer (R) 3-hydroxy-
butyrate, the recombinant strain could simultaneously uptake xylose, 
arabinose and glucose by eliminating the pts G-gene and allowing it to 
evolve in arabinose. Thus, expanding substrate utilization also positively 
influences PHA production. 

5.5.2. Engineering cell morphology 
Along with significant microbial growth rate and rapid carbon source 

utilization, the design of cell morphology is also a critical factor in 
enhancing the accumulation of PHA. Controlled gene expression will 
cause changes in the cell’s morphology such as length and size of the 
cells especially. Larger cell size will help cells to harbour more amount of 
substrate for PHA production and as a result PHA production will also 
increase (Zhao et al., 2019). For example, using CRISPRi, Halomonas 
TD01 was constructed to suppress the expression of the FtsZ gene, 
resulting in filamentous cells with higher levels of PHA (Tao et al., 
2017). Wang et al. (2014) have also demonstrated the overexpression of 
the sulA gene by a recombinant PHA producer, E. coli, by modifying its 
cell morphology, caused a double increase in PHB content. 

5.5.3. Optimizing metabolic-pathways 
Optimizing the metabolic pathways is another trend followed during 

metabolic engineering. While pathway optimization, the main objective 
must be to attain higher expression levels of PHA enzymes for rapid 
polymer synthesis. The formation of intermediates or metabolic stress 
within the cell must be avoided. Another strategy to optimize the 
pathway is by modifying the PHA enzyme’s promoter strength (Shen 

et al., 2018; Liu et al., 2021b) by site-directed mutagenesis or codon 
optimization to increase the enzyme activity (Zhang et al., 2019a, b; 
Wainaina et al., 2020b), by eliminating competitive pathways that 
reduce PHA contents or by allowing heterologous expressions of 
different microbial enzymes. In the PHA pathway, one of the predomi-
nant competitive reactions is the degradation of the polymer, which is 
catalyzed by endogenous PHA depolymerase (phaZ). Studies carried out 
by Cai et al. (2009) have proven that PHA accumulation by P. putida 
could be improved from 66 to 86 wt% of its cell’s dry weight by deleting 
the phaZ gene. Though E. coli lacks the phaZ gene, acetate formation by it 
is considered the crucial competitive pathway during PHAs production. 
To eliminate such competitive pathways, several research on metabolic 
strategies to subdue it and further escalate their titer, product rate, and 
yield have been reported (Perez-Zabaleta et al., 2019; Zhuang and Qi, 
2019). Recombinant E. coli which could produce lower amounts of ac-
etate could produce 2–3fold greater levels of (R)-3-hydroxybutyrate) 
(Perez-Zabaleta et al., 2019). 

5.5.4. Increasing precursor availability 
Another approach to redirect the flux toward product formation is to 

intensify the precursor’s availability, mainly Acetyl-CoA, common in 
most PHA pathways (Fig. 1). Acetyl-CoA’s accessibility can be elevated 
by overexpression of genes responsible for PHA production or by 
developing alternate pathways such as SACA pathway (Synthetic Acetyl- 
CoA). According to Lu et al. (2019), SACA pathway is a conserved car-
bon pathway independent of ATP, which produces Acetyl-CoA using a 
sole carbon source in a three-step reaction process. Anfelt et al. (2015) 
have reported that the overexpression of phosphoketolase could inflate 
acetyl-CoA’s availability to six-folds and increase PHA synthesis. 

5.5.5. Cofactor availability 
The availability and regeneration of cofactors are essential factors in 

PHA production since the second step requires NADPH as a cofactor. The 
reductase of most PHA-producing microorganisms uses NADPH as a 
necessary cofactor except for those of Chromatium vinosum (dependent 
on NADH) (Liebergesell and Steinbuchel, 1992) and of Halomonas boli-
viensis reductase (utilizes both cofactors, but preferably NADPH) (Per-
ez-Zabaleta et al., 2016). Improving the ability to conserve NADPH 
through overexpression of glucose phosphate dehydrogenase (zwf) has 
promoted the yield of PHB (Lim et al., 2002) and (R)3-hydroxybutyrate 
(Perez-Zabaleta et al., 2016). The overexpression of NADkinase led to an 
increased supply of NADPH which further improved the PHB yield to 
76%. Alternatively, the insertion of enzymes such as ribulose-1, 
5-bisphosphate carboxylase/oxygenase (RuBisCo) and phosphor-
ibulokinase into the PHA pathway allowed excess NADH to be reused, 

Table 3 
Productivity of bioplastics by mixed cultures at the laboratory and pilot scale.  

Sl. 
No. 

Microorganisms Carbon source Type of 
Bioplastics 

Content 
(%) 

References 

1 Bacillus megaterium UMTKB-1 Medical plastic waste + Waste frying oil (800 W) P(3HB) 1.54 ±
0.13 

Mahari et al. (2022) 

2 B. gladioli 2S4R1 Glucose + Xylose + Arabinose PHB 52.06 Naitam et al. (2022) 
3 B. cereus LB7 Glucose + Xylose + Arabinose PHB 50.71 Naitam et al. (2022) 
4 L. mesenteroides Cheese whey PHA 36 Bosco et al. (2021) 
5 Cupriavidus necator Volatile fatty acids from paper wastes PHA 60.71 Al Battashi et al., (2021) 
6 Cupriavidus necator Cheese whey 3HB 3HV 71 Domingos et al. (2018) 
7 Cupriavidus necator Waste rapeseed oil 3HB 3HV 76 Obruca et al. (2010) 
8 Bacillus megaterium Sucrose 3HB 62 Faccin et al. (2013) 
9 Pandoraea sp. MA03 Crude glycerol 3HB 49 de Paula et al. (2017) 
10 Pseudomonas aeruginosa ATCC 

27853 
Long odd chain fatty acids (heptadecanoic acid, nonadecanoic acid, 
heneicosanoic acid) 

3HB 3HV 13.4 Impallomeni et al. (2018) 

11 Pseudomonas putida Glucose + glycerol + octanoate HHx, HO, HD 57 Fontaine et al. (2017) 
12 Recombinant Pseudomonas 

putida 
Waste vegetable oil HHx, HO, HD 38.3 ± 3.1 Borrero-de Acuña et al. 

(2019) 
13 Burkholderia sacchari Waste paper PHB 44.2 Al-Battashi et al. (2019) 
14 Burkholderia sacchari Glucose + different co-substrates PHB 2.7–73.7 Mendonça et al. (2014) 
15 Bacillus sp. ISTVK1 Pure glycerol PHV 85.19 Morya et al. (2018)  
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further increasing the yield of the product on sugars (Li et al., 2009). 

5.6. rDNA technologies 

At present, rDNA technologies have gained significant importance in 
achieving the desired cell function of an organism through random 
mutagenesis or adaptive evolution, leading to altered variations in their 
phenotypes and metabolic pathways. Snell et al. (2002) have proven this 
revelation through their research which suggested that reverse engi-
neering of YfcX (3-hydroxyacyl-CoA dehydrogenase) has been signifi-
cant in mcl-PHAs synthesis. Pries et al. (1990) have reported that 
Pseudomonas saccharophila and Cupriavidus necator were genetically 
modified to utilize lactose and galactose through reverse engineering. 
However, they synthesized lower amounts of PHB. Lactose conversion 
was achieved by introducing the genes lacZ (encoding for β-galactosi-
dase), lacO (the lac operator), and lacI (encoding for a lac repressor) of 
E. coli. By one-step conversion, the resulting recombinant strains pro-
duced PHAs from lactose. The strategy followed by the authors was to 
insert the lac operon into one of the depolymerase genes (phaZ1) to 
reduce polymer depolymerization by the cell and ultimately increase the 
yield of PHA production. The switching off of the phaZ1 gene led to a 
30–40% less depolymerization even without a carbon source (Povolo 
et al., 2010). Likewise, several genetic modifications were carried out in 
microbes to impart improved PHA yield by using different types of waste 
as carbon sources in Table 4. 

6. Pioneering applications of bioplastics 

Bioplastics have been applied in several fields, including industrial, 
agricultural, and medical applications, with proven consistency. Fig. 3 
illustrates the pioneering applications of these biopolymers. 

6.1. Industrial applications 

PHB can be used to make heteropolymers by moulding, extruding, 
spinning into fibres and processing into food packaging films. As 
compared to the conventional packaging material, these films were 
distinguished by excellent oxygen permeability (OP), considerable ten-
sile strength, high antioxidant activity, high water vapour transmission 
rate (WVTR) and significant antimicrobial action (Ma et al., 2018). 

PHAs are relatively expensive to manufacture; plastics are incorpo-
rated with inert fillers or additives, such as clay minerals and wood 
flour, to lessen manufacturing costs. The use of biorefinery lignin residue 
extracted from corn stalks mixed with P(3HB-co-4HB), bagasse based 
soda lignin, and PHB mixed with biorefinery lignin residues derived 

from Arundo donax are some examples (Angelini et al., 2016). Aug-
mentations in the PHB-lignin composites properties during 3D printing 
were recently demonstrated (Sutton et al., 2018). Pinus-based bio-
refinery lignin in PHB composites, processed into films, is effectively 
used in 3D printing (Vaidya et al., 2019). 

6.2. Agricultural applications 

The applications of bioplastics in agriculture are pretty limited. So 
far, agricultural uses such as grow bags, farm nets and mulch films have 
been studied. Agricultural nets made up of biodegradable PHAs are 
being considered at the moment. The compostability of PHA’s biode-
gradable meshes allows the bioplastic to be disposed of directly into the 
soil. Different bioplastics such as PHB and their blends with PLA are 
most widely used for manufacturing agricultural nets due to their high 
tensile strength (Kusuktham and Teeranachaideekul, 2014). Production 
of PHA-based grow bags sequesters nitrogen from the water, does not 
pollute the surrounding water bodies, prevents root reformation, and 
avoids pollution concerns (Adane and Muleta, 2011). Agricultural 
mulch films are critical for increased crop yield and protection, apart 
from grow bags. Mulch films can retain moisture content, maintain 
excellent soil structure and prevent contamination by managing 
nuisance weeds and it is noted that plastic mulch accounts for 40% of 
agricultural mulch (Rydz et al., 2015). High density polyethylene 

Table 4 
List of genetically modified microbes used for enhanced PHA production by using different types of waste as carbon source.  

Sl.. 
No. 

Microorganisms 
involved 

Genetic modifications done Type of waste used as 
carbon source 

References 

1. R. eutropha (C. 
necator) 

Mannheimia succiniciproducens MBEL55E sacC gene Molasses Park et al. (2015) 

2. Modified C. necator 
H16 

Sucrose utilization (csc) genes of E. coli Arikawa et al. (2017) 

3. C. necator mutant Aeromonas caviae PHA-synthase gene Waste lipids Fukui and Doi (1998) 
4. Pseudomonas putida Pseudomonas lipase genes Solaiman et al. (2001) 
5. P. oleovorans   
6. Bacillus licheniformis Sequential mutations Sangkharak and Prasertsan 

(2013) 
7. Escherichia coli Endoxylanase (XylB) from S. coelicolor and a β-xylosidase (XynB) from B. subtilis Cellulosic materials Salamanca-Cardona et al. 

(2014) 
8. Rhodospirillum 

rubrum 
PHA synthase genes (phaC) Syngas Klask et al. (2015) 

9. Escherichia coli Addition of C. butyricum’s glycerol dehydratase genes; Salmonella enterica’s 
propionaldehyde dehydrogenase, and R. eutropha’s (C. necator) PHA synthase gene 

Crude glycerol Andreeβen et al. (2010) 

10. Escherichia coli Phosphotransferase system mutant Lignocellulose 
hydrolysates 

Li et al., 2007a, b 

11. Aeromonas sp. inserting the operon of C. necator (phaCAB) Starch Chien and Ho (2008)  

Fig. 3. Pioneering applications of bioplastics.  
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(HDPE), low density polyethylene (LDPE), and linear LDPE are generally 
used to synthesize plastic mulch. As a result, they frequently end up in 
landfills or get incinerated, which further causes environmental pollu-
tion. In recent years, studies on bioplastics such as polybutylene succi-
nate, PLA, corn starch polymers, ethylene vinyl acetate and other PHAs 
have been reported (Niaounakis, 2015; Wainaina et al., 2019). Further 
research on the extensive usage of bioplastics for mulch production can 
validate them as a sustainable alternative to traditional plastic mulch 
films. 

6.3. Medical applications 

PHAs’ biocompatibility makes them an essential compound for 
medical applications. They serve as biomaterials while directing medical 
therapy by eliciting an acceptable host response. PHAs have been 
applied in tissue engineering in some medical techniques, including 
injection, plates, pins and fracture fixation devices. In 2007, Food and 
Drug Administration (FDA) suggested that PHA uses in biomedical do-
mains would have a bright future. Sabarinathan et al. (2018) reported 
the inherent biocompatible nature of PHB through its application in 
cancer detection as cancer cells adhered firmly to PHB sheets, whereas 
normal cells did not.PHA based implants of heart valves, drug delivery 
agents, tissue engineering of nervous, vascular and orthopaedic tissues 
are yet some successful usages of bioplastics in medicine. Furthermore, 
long-term implantation of PHAs has been non-carcinogenic (Liz-
arraga-Valderrama et al., 2015; Panith et al., 2016). 

Bioplastics, mainly poly (3 hydroxybutyrate co 3 hydroxyhexanoate) 
PHBHHx, exhibit a positive role in promoting bone tissue growth, while 
hydroxyapatite (HAP) mixed with PHB displayed improvements in the 
modulus of elasticity in compression, and cell division (Sadat-Shojai 
et al., 2016). The biocompatibility and elasticity of P3HB4HB enable 
elastin-based artificial blood vessels, whereas P3HB4HB-diol shows low 
platelet adhesion (Li et al., 2011). Intriguingly, PHB has been beneficial 
and applicable in the neurological fields. It has been reported to help the 
survival, multiplication and attachment of the adult Schwann cells along 
neural axons. PHB tubes could enhance common perennial nerve injury 
for peripheral nerve regeneration, and PHBHHx promotes neural repair 
(Novikova et al., 2008). Interestingly, hydrophobic PHA nanoparticles, 
engineered PHA synthase system fused PHB nanoparticles in addition to 
colon cancer are ideal for ideal drug delivery agents (Panith et al., 
2016). Moreover, Chaturvedi et al. (2015) could successfully load an 
insulin delivery system mixed with PHBHHx nanoparticulate phospho-
lipids (INSPEC-NPs), which exhibited an extended therapeutic effect. 
Similarly, PHB/Polyethylene glycol (PHB PEG) nanoparticles have been 
proven to achieve insulin encapsulation and maintain its release (Cha-
turvedi et al., 2015). 

7. Major bottlenecks and future perspectives of bioplastic 
production 

Bioplastics have transformed into an inventive research area for 
scientists around the world. The necessity for eco-friendly alternatives 
has resulted in this progressive development (Shamsuddin et al., 2017). 
This field has developed very dynamically since introducing the first 
modern biological plastics some 30 years ago. The introduction of bio-
plastics can certainly bring risks and benefits, but the truth is that they 
are essential to replace currently used plastics. The potentiality of every 
biochemical process is assessed depending on its performance, product 
titre, production rate, post-processing efficiency, and cost concerns 
(Noorman and Heijnen, 2017). When compared to ordinary polymers, 
PHAs have higher production costs. Several challenges must be 
conquered to reduce their manufacturing costs and make PHAs 
economically viable. The choice of raw materials is the most critical 
challenge to consider as substrate costs typically represent40-60% of 
total biobased product costs. The overall throughput of bioplastics 
production is significantly lower than that of similar petroleum-based 

plastic production. Utilizing less expensive substrates and their avail-
ability throughout the year is critical for commercializing PHA synthe-
sis. The logistics of collecting and transporting the raw material can also 
generate some costs. One proposed option is to integrate PHA synthesis 
into existing industrial plants and transform them into multi-production 
biorefineries by utilizing industrial wastes, thereby providing a contin-
uous substrate for PHA production by reusing and recycling trash 
(Nguyen et al., 2018).In the meantime, in regions like South America 
and Asia, large-scale production capacities are increasingly installed 
where low-cost feedstocks, e.g. sugarcane and molasses, are available in 
sufficient quantities (Storz and Vorlop, 2013). 

Biopolymers’ future market is anticipated to escalate due to their 
sustainability. With the aid of biotechnologically proven advanced 
methodologies, the usage of microorganisms could remarkably influ-
ence PHA production to conquer current challenges. Due to their similar 
properties and incredible features, such as biocompatibility and biode-
gradability, microbial PHAs are ideal alternatives to routinely used 
petro-plastics. Nevertheless, there are critical limitations to the mass 
production of bioplastics using microbes (Francis et al., 2021). Setbacks 
related to downstream processing, a low substrate to product conversion 
ratio, and irregularities in bioplastic properties of each batch are some of 
the blocks faced during PHA commercialization. Recombinant organ-
isms producing bioplastics using cheaper carbon sources such as lactose, 
glycerol, molasses, sucrose, oils and methane can be constructed by 
exploring the microbial biosynthetic pathways and their regulatory 
pathways (Madison and Huisman, 1999; Poirier, 2002). In the case of 
mixed cultures, the application of bioaugmentation strategies to bring a 
substantial productive yield should be investigated. The biomass bio-
augmentation of Plasticicumulans acidivorans resulted in 85%PHB accu-
mulation from mixed culture processes (Marang et al., 2018), whose 
output was higher than an individual culture. Such mixed cultures can 
lead to the substantial conversion of the raw materials with inflated 
biopolymer formation, further bringing the commercial PHA production 
closer to reality. 

A significant extent of the total cost of PHA production is to extract 
bioplastics. Using more economical and sustainable methods to recover 
PHAs will considerably deduct the total cost of PHA production.PHA 
extraction methods include digestion, solvent extraction, and floatation, 
which consume large quantities of chemicals and result in associated 
expenses. Due to chlorinated solvents or surfactants, PHA production is 
estimated to be approximately thrice more expensive than petrochemi-
cally derived plastics (Sun et al., 2007). Research that focuses on using 
more economical and eco-friendly chemicals and solvents is critical. 
Another bottleneck that has to be addressed is improving the recovery 
efficiency. Research on morphology engineering, which can alter the 
size and form of PHA granules, is critical for optimal downstream pro-
cessing. The discovery of mechanisms that allow PHAs to accumulate 
extracellularly can bring up a novel window of research opportunities. 
The extent of bioplastic accumulation could be thus being increased, 
recovery would be easy, and a new pace of production could be gener-
ated by extracellular bioplastic accumulation (Khatami et al., 2021). 
Therefore, the future of bioplastics is believed to depend on the efforts 
made to fulfil reasonable costs and performance yield. 

When we talk about the environmental impact of bioplastics it stands 
as a controversy. But the harmful effects of bioplastics are less when 
compared to the conventional petroleum-based plastics. In composting 
conditions decomposition of bioplastics will produce methane. So, 
during massive composting of bioplastics in landfill sites may contribute 
to global warming. The main priority of growing maize and corn which 
can be used for bioplastic production will shift from food security to 
bioplastic production. This will compete with food production and se-
curity. Chemical pesticides used in these crops will also pollution on 
other side. Also, chemicals used for converting the organic material to 
bioplastic will cause issues when they released to the environment 
(Atiwesh et al., 2021). 
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8. Conclusion 

This review uncovers recent advances in microbial production of 
bioplastics. Microbial bioplastics are considered sustainable alternatives 
to conventional plastics. Diverse microorganisms synthesizing different 
types of bioplastics have been described here. Detailed research on the 
molecular basis of bioplastic production revealed that various metabolic 
pathways are responsible for synthesizing biopolymers depending on 
the available substrate in the growth medium. This review article also 
illustrates the implementation of advanced methodologies for microbial 
bioplastic production such as various advanced fermentation processes, 
metabolic engineering, engineering cell morphology, genetic engineer-
ing that promote bioplastic production and sustainability. Due to their 
predominant biocompatible traits and novel applications, we may 
conclude that microbial bioplastics have a promising future. Apart from 
the beneficiary traits bioplastics also can cause some environmental is-
sues, but those were less harmful when compared to the petroleum- 
based plastics. 
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Santos, T., 2021. Increased plastic pollution due to COVID-19 pandemic: challenges 
and recommendations. Chem. Eng. J. 405, 126683. 

Simangunsong, D.I., Hutapea, T.H.A., Lee, H.W., Ahn, J.O., 2019. The effect of 
nanocrystalline cellulose (NCC) filler on polylactic acid (PLA) nanocomposite 
properties. J. Eng. Technol. Sci. 50, 578–587. 
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